
JassTheRipper – A High-Human
Artificial Intelligence

for the Swiss Card Game Jass

Determinized Monte Carlo Tree Search for 4-Player Schieber

Master Thesis

Joel Niklaus

University of Fribourg

December 2019

Joel Niklaus: JassTheRipper - A High-Human Artificial Intelligence for the
Swiss Card Game Jass, Determinized Monte Carlo Tree Search for 4-Player
Schieber, Master of Science (MSc), c© December 2019

supervision:
Prof. Rolf Ingold Thesis Director
Michele Alberti Supervisor
Prof. Markus Stolze External Advisor
Prof. Thomas Koller External Advisor

institition:
University of Fribourg
Faculty of Science and Medicine
Department of Informatics
Document, Image and Voice Analysis Group (DIVA)

location:
Bern

date:
December 2019

When something is important enough,
you do it even if the odds are not in your favor.

— Elon Musk

This is one of the most important lessons of the scientific method:
if you cannot fail, you cannot learn.

— Eric Ries (The Lean Startup)

A B S T R A C T

Despite the recent successful application of Artificial Intelligence (AI)
to games, the performance of cooperative agents in imperfect infor-
mation games is still far from surpassing humans. Cooperating with
teammates whose play-styles are not previously known poses addi-
tional challenges to current state-of-the-art algorithms. In the Swiss
card game Jass, coordination within the two opposing teams is crucial
for winning. Since verbal communication is forbidden, the only way
to transmit information within the team is through a player’s play-
style. This makes the game a particularly suitable candidate subject
to continue the research on AI in cooperation games with hidden
information. To the best of our knowledge, performances of AI agents
in the game of Jass do not outperform top players yet. In this work, we
analyse the effectiveness and shortcomings of several state-of-the-art
algorithms (Monte Carlo Tree Search (MCTS) variants and Deep Neural
Networks (DNNs)) at playing the Jass game. Our key contributions
are four-fold. First, we provide an overview of the current state-of-
the-art of AI methods for card games in general. Second, we discuss
their application to the use-case of the Swiss card game Jass. Third,
we provide a performance overview for state-of-the-art algorithms,
thus, setting a strong foundation for further research on the subject.
Fourth, we implement and open-source1 a platform where different
agents (both humans and AI) can play Jass in an automated fashion,
effectively reducing the overhead for other researchers who want to
perform further experiments. Finally, preliminary results against hu-
mans players suggest that our most robust bots (Determinized Monte
Carlo Tree Search (DMCTS) for Card Play and DNN for Trump Selection)
can play the game at the level of active amateur human players with
over 10 years of experience on average.

1 https://gitlab.enterpriselab.ch/jass/info/

v

https://gitlab.enterpriselab.ch/jass/info/

P U B L I C AT I O N S

Parts of this thesis are directly taken from the following publications:

[1] Joel Niklaus, Michele Alberti, Rolf Ingold, Markus Stolze, and
Thomas Koller. “Challenging Human Supremacy: Evaluating
Monte Carlo Tree Search and Deep Learning for the Trick Taking
Card Game Jass”. In: Under Review: 19th International Conference
on Autonomous Agents and Multi-Agent Systems. Auckland, New
Zealand, 2020.

[2] Joel Niklaus, Michele Alberti, Rolf Ingold, Markus Stolze, and
Thomas Koller. “Challenging Human Supremacy: Evaluating
Monte Carlo Tree Search and Deep Learning for the Trick Taking
Card Game Jass”. In: Association for the Advancement of Artificial
Intelligence Workshop on Reinforcement Learning for Games. New
York, United States, Feb. 2020.

[3] Joel Niklaus, Michele Alberti, Rolf Ingold, Markus Stolze, and
Thomas Koller. “Comparing Learning and Search Algorithms
in the Swiss Card Game Jass”. In: Applied Machine Learning Days.
Lausanne, Switzerland, Jan. 2020.

[4] Joel Niklaus, Michele Alberti, Vinay Pondenkandath, Rolf In-
gold, and Marcus Liwicki. “Survey of Artificial Intelligence for
Card Games and Its Application to the Swiss Game Jass”. In:
2019 6th Swiss Conference on Data Science (SDS). June 2019, pp. 25–
30. doi: 10.1109/SDS.2019.00-12.

vii

https://doi.org/10.1109/SDS.2019.00-12

I could either watch it happen or be a part of it.

— Elon Musk

A C K N O W L E D G M E N T S

I am greatly indebted to my supervisor Michele Alberti from the
University of Fribourg for his exceptional support and guidance all
along the way. I highly appreciate his high quality and almost instant
advice on Telegram. He provided great help in how to communicate
efficiently, in strategic decisions and of course in technical questions.
The opportunity to ask him about almost anything and immediately
receive a high quality answer and support was invaluable.

Next, I want to thank my thesis director Prof. Rolf Ingold from the
University of Fribourg for his valuable feedback and for providing
me with the computational resources needed for running the bot
and the Jass game server and the infrastructure for conducting my
experiments.

Further, I would like to thank my external advisors Prof. Markus
Stolze from the University of Applied Sciences in Rapperswil for
his valuable inputs, his connections and for participating in the
tournament and Prof. Thomas Koller from the University of Applied
Sciences in Lucerne especially for his great help and passion with
conducting the bot competitions. I enjoyed very much the close and
inspiring collaboration with him.

I would also like to sincerely acknowledge the great help of my
friends:
First, thanks to Jeanne Kunz for her help with calculating the number
of states and information sets in Jass. Second, thanks to Dominik
Briner, who designed and implemented the first version of the rule
based trump selection, for his advice and ideas with possible im-
provements for the bot. Third, thanks to Manuel Leuenberger for
his great help with Python concurrency issues concerning the gym
environment. Finally, thanks to Melissa Chang and Lukas Zbinden for
their proofreading and for their valuable comments and feedback.

I also want to express my sincere thanks to all the experiment
participants who played against the bot for their curiosity and their
survey responses.

I want to sincerely thank the anonymous reviewers for taking the
time to read our papers and for their valuable feedback.

ix

Finally, I must express my very profound gratitude to my parents
for providing me with unfailing support and continuous encour-
agement throughout my years of study and through the process of
researching and writing this thesis. This accomplishment would not
have been possible without them. Thank you.

The Author

Joel Niklaus

x

C O N T E N T S

i background
1 introduction 3

1.1 Motivation 4
1.2 Contributions 4

2 theoretical foundations 5
2.1 Game Types 5

2.1.1 Perfect Information Games vs. Imperfect Infor-
mation Games 5

2.1.2 Cooperative vs. Non-Cooperative 5
2.1.3 Sequential vs. Simultaneous 5
2.1.4 Extensive-form Games 6
2.1.5 Constant-sum vs. Non-constant-sum Games 6
2.1.6 Finite vs. Infinite 6
2.1.7 Coordination Games 6

2.2 AI Performance Evaluation 7
2.2.1 Nash Equilibrium 7
2.2.2 Exploitability 7
2.2.3 Rating Systems 8
2.2.4 Comparison to Humans 8

3 the card game jass 9
3.1 Jass in a Nutshell 9
3.2 Terminology 10
3.3 Complexity 11
3.4 Similar Games 11

4 related work 13

ii state of the art and beyond
5 rule-based systems 17
6 reinforcement learning methods 19

6.1 Temporal Difference Learning 19
6.2 Policy Gradient 19
6.3 Counterfactual Regret Minimization 20

6.3.1 Counterfactual Regret Minimization+ 20
6.3.2 Deep Counterfactual Regret Minimization 20
6.3.3 Discounted Counterfactual Regret Minimiza-

tion 20
6.4 Neural Fictitious Self Play 21
6.5 First Order Methods 21

7 monte carlo methods 23
7.1 Monte Carlo Simulation 23
7.2 Flat Monte Carlo 23

xi

xii contents

7.3 Monte Carlo Tree Search 23
7.3.1 Upper Confidence Bound for Trees 24
7.3.2 Determinization 24
7.3.3 Information Set Monte Carlo Tree Search 25

7.4 Monte Carlo Counterfactual Regret Minimization 25
7.4.1 Online Outcome Sampling 25

7.5 Combining RL with MCTS 26
8 evolutionary algorithms 27
9 suitable methods for ai in card games 29

iii empirical evaluation
10 implementation 33

10.1 Time-based Determinized MCTS 33
10.2 Iteration-based Determinized MCTS and Information

Set MCTS 33
10.3 Deep Neural Network 34

10.3.1 Card Play Network 34
10.3.2 Trump Selection Network 35

11 general experimental setup 37
11.1 Data Sets 37
11.2 Technical Infrastructure 37
11.3 Tournament Setup 38

12 value estimation comparison 39
13 experiments between bots 43

13.1 Experiment Setup 43
13.2 Hyper Parameters for Determinized Monte Carlo Tree

Search 43
13.2.1 Determinizations and Iterations 43
13.2.2 Exploration Constant 44
13.2.3 Scalability 45

13.3 Trump Selection Phase 46
13.4 Card Play Phase 47

14 experiments against human players 51
14.1 Human Team vs Bot Team 51
14.2 Human and Bot vs Bot Team 52
14.3 Human Players Feedback 53

15 analysis 55
15.1 Value Estimation 55
15.2 MCTS Hyperparameters 55
15.3 Trump Selection 55
15.4 Card Play 55
15.5 Human Experiments 56

iv conclusion and outlook
16 conclusion 61
17 outlook 63

contents xiii

bibliography 65

v appendix
a description of mentioned games 75
b reviews 77

b.1 Swiss Data Science Conference 2019 77
b.1.1 Review 1 77
b.1.2 Review 2 78
b.1.3 Review 3 78

b.2 AAAI Workshop on Reinforcement Learning for Games
2020 79
b.2.1 Review 1 79

b.3 Review 2 79

L I S T O F F I G U R E S

Figure 3.1 Schieber Trick 9
Figure 3.2 Jass Cards 10
Figure 12.1 Value Estimation Methods 40
Figure 13.1 DMCTS Hyper Parameters 45
Figure 13.2 Bots Against DNN 48
Figure 13.3 Bots Against DMCTS 49

xiv

L I S T O F TA B L E S

Table 13.1 DMCTS Scalability 46
Table 13.2 Trump Selection Methods 47
Table 14.1 Bots Against Single Humans 53

xv

A C R O N Y M S

API Application Programming Interface

REST Representational State Transfer

GUI Graphical User Interface

MSE Mean Squared Error

STD Standard Deviation

AI Artificial Intelligence

RL Reinforcement Learning

SL Supervised Learning

CFR Counterfactual Regret Minimization

RB Rule-Based

NE Nash Equilibrium

API Application Programming Interface

AI Artificial Intelligence

RL Reinforcement Learning

PIG Perfect Information Game

IIG Imperfect Information Game

MC Monte Carlo

MCTS Monte Carlo Tree Search

ISMCTS Information Set Monte Carlo Tree Search

DMCTS Determinized Monte Carlo Tree Search

P-DMCTS Probability Determinized Monte Carlo Tree Search

P-ISMCTS Probability Information Set Monte Carlo Tree Search

T-DMCTS Time-based Determinized Monte Carlo Tree Search

I-DMCTS Iteration-based Determinized Monte Carlo Tree Search

UCT Upper Confidence Bound for Trees

NFSP Neural Fictitious Self-Play

xvi

acronyms xvii

FOM First Order Methods

EGT Excessive Gap Technique

CFR Counterfactual Regret Minimization

MCCFR Monte Carlo Counterfactual Regret Minimization

OOS Online Outcome Sampling

PG Policy Gradient

PPO Proximal Policy Optimization

TRPO Trust Region Policy Optimization

TDL Temporal Difference Learning

EA Evolutionary Algorithm

RNN Recurrent Neural Network

ANN Artificial Neural Network

DNN Deep Neural Network

SDS Swiss Conference on Data Science

AAAI Association for the Advancement of Artificial Intelligence

AAMAS International Conference on Autonomous Agents and
Multiagent Systems

Part I

B A C K G R O U N D

In this part we introduce theoretical foundations and then
give background information about the game Jass.

1
I N T R O D U C T I O N

In recent years, numerous breakthroughs have taken place in the field
of research for AI in games. In particular, in the perfect information
games division — where all players are familiar with the entire game
state at all times — computers prevail over skilled human players on
various occasions, such as Chess [13], the Atari games [39] or Go [59].

When it comes to imperfect information games — where players do
not know some of the information, such as in card games — there is
a thin line separating AI from people who still have the upper hand
over state-of-the-art bots. Hidden information is also present in many
real-world scenarios, such as business, negotiations, physics, surgery,
and others. Many of these situations can be formalized as games that,
in turn, can be solved using the methods developed in the card games
testbed.

Recent work has shown that the distance between humans and
AI is becoming smaller in constrained situations. This is particularly
evident when considering developments on Texas hold’em no-limit
poker [7, 9] and the StarCraft II computer game [68].

The multiplayer computer game Dota 2 includes hidden information
and team play. Although OpenAI Five won against world champions
in a 5 vs. 5 game, collaboration remains as an open research area in
AI1.

To instill AI systems with collaboration, card games may be a very
suitable testbed since they a) include hidden information, b) frequently
have a collaborative aspect, and c) are computationally easy to simulate
because they have a finite set of actions.

There is a large variety of card games, where many use different
cards and rules, which poses different challenges to the players. To
tackle these different issues, several methods have been proposed. Un-
fortunately, these methods are often either very complex, or introduce
only minor modifications to address a particular issue for a particular
game. Despite producing good empirical results, this practice leads
to a more complex landscape of literature which is at times hard
to navigate, especially for new practitioners in the field. To combat
this unwanted side effect, overviews of the current recent trends and
methods are very helpful. In this work, we aim to provide such an
overview of AI methods applied to card games (also published at
Swiss Conference on Data Science (SDS) 2019 [46]). In the appendix
there is a short description of the games we mention in this work.

1 https://openai.com/blog/how-to-train-your-openai-five/

3

https://openai.com/blog/how-to-train-your-openai-five/

4 introduction

1.1 motivation

Jass is a trick-taking card game featuring hidden information. In the
4-player Schieber variant, good coordination within the team is crucial
for achieving victories in top tournaments.

DeepMind introduced the Hanabi Challenge, opening a new frontier
in AI research using the fully cooperative card game Hanabi [1]. In
Hanabi, the players need to lay down cards in order having only the
knowledge of the other players’ cards. Therefore, the players need
to work together to be able to win the game. Jass combines both a
cooperative and a competitive aspect as it includes two competing
teams of two cooperating players.

Since there are approximately 1.16e28 states in Schieber after the
cards have been dealt (see Section 3.3) and additionally it is not known
in what state the player is because of the hidden cards, the game is
computationally complex.

Jass is a very popular Swiss card game and is closely associated
with Swiss culture. It is also similar to other games like the American
Spades, the British Bridge, and the German Skat. Thus research in Jass
is valuable for many other domains.

However to the best of our knowledge, a formal approach towards
Jass has not been addressed in a scientific manner yet. The Swiss
Intercantonal Lottery and some Jass applications have deployed some
AI agents, but these programs are not yet able to beat top human
players.

1.2 contributions

• We provide a literature review of the current state-of-the-art in
AIs for card games.

• We discuss the potential merits and demerits of the different
methods outlined in the paper towards Jass

• We perform an analysis of the most promising state-of-the-art
methods for AI in card games (DMCTS, Information Set Monte
Carlo Tree Search (ISMCTS), DNN and Rule-Based (RB)).

• We lay the groundwork for further research on AI in Jass.

• We release public open-source software infrastructure (see Sec-
tion 11.2) and an Application Programming Interface (API), so
anyone can quickly connect their bots and test them both against
other bots as well as against human via a GUI.

2
T H E O R E T I C A L F O U N D AT I O N S

In this chapter we introduce terms necessary to understand AI for card
games.

2.1 game types

Games can be classified in many dimensions. In this section we outline
the ones most important for classifying card games.

2.1.1 Perfect Information Games vs. Imperfect Information Games

In Perfect Information Games (PIGs), like Chess and Go, the players
always know the current game state. In Imperfect Information Games
(IIGs) on the other hand, there is information hidden from the players -
for instance, the cards of other players in Poker or Bridge are examples
of hidden information.

Note that perfect information is not the same as complete informa-
tion. In a game of incomplete information, a player may not know
certain rules known by another player. However, games of incomplete
information can be reduced to IIGs by introducing moves by nature.
For example, the random cards dealt at the beginning of a Poker game
by the dealer can be represented as a chance node (move by nature) in
the decision tree.

2.1.2 Cooperative vs. Non-Cooperative

In cooperative games players can form alliances or agreements to team
up against other players or teams. In non-cooperative games this is
generally not possible.

2.1.3 Sequential vs. Simultaneous

A game is sequential if only one player moves at a time and simul-
taneous if multiple players can make a move at the same time. Most
card games are sequential.

2.1.3.1 Representation

Simultaneous games are mostly formalized as normal-form games.
These games are represented by payoff matrices which show the

5

6 theoretical foundations

players with their strategies on the axes and the payoffs in the corre-
sponding cells.

2.1.4 Extensive-form Games

Sequential games are normally formalized as extensive-form games.
These games are played on a decision tree, where a node represents
a decision point for a player and an edge describes a possible action
leading from one state to another. For each node in this tree it is
possible to define an information set.

2.1.4.1 Information Sets

An information set includes all the states a player could be in, given the
information the player has observed so far. In PIGs, these information
sets always only comprise exactly one state, because all information is
known. In an IIG like Poker, this information set contains all the card
combinations the opponents could have, given the information the
player has, i.e. the cards on the table and the cards in the hand.

2.1.5 Constant-sum vs. Non-constant-sum Games

In a constant-sum game, there is a limited amount of resources avail-
able. So, the total benefit of all players always adds up to a constant.
If one player gains some benefit through a move, at least one other
player loses some benefit. In a non-constant-sum on the other hand, the
amount of available resources may change during the game. Zero-sum
games are a special case of constant-sum games where the constant
is equal to zero. Well-known examples of zero-sum games are Chess
or Go. A constant-sum game can be reduced to a zero-sum game by
subtracting a constant from each player’s benefit.

2.1.6 Finite vs. Infinite

A finite game ends after a finite number of moves. An infinite game
may go on forever.

2.1.7 Coordination Games

Unlike many strategic situations, collaboration is central in a coordi-
nation game, not conflict. In a coordination game, the highest payoffs
can only be achieved through team work. Choosing the side of the
road to drive on is a simple example of a coordination game. It does
not matter which side of the road you agree on, but to avoid crashes,
an agreement is essential. In card games, like Bridge or Jass, where

2.2 ai performance evaluation 7

there are two teams playing against each other, the interactions within
the team can be seen as a coordination game.

2.2 ai performance evaluation

When developing an AI, it is important to accurately measure its
strength in comparison to other AIs and humans. The ultimate goal
is to achieve optimal play. When a player is playing optimally, s/he
does not make any mistakes but plays the best possible move in every
situation. When an optimal strategy in a game is known, this game is
considered solved. Checkers is an example of a solved game [53].

2.2.1 Nash Equilibrium

A Nash Equilibrium (NE) describes a combination of strategies in
non-cooperative games. When two or more players are playing their
respective part of a NE, any unilateral deviation from the strategy leads
to a negative relative outcome for the deviating player [42]. So when
programming players for games, the goal is to get as close as possible
to a NE. When one is playing a NE strategy, the worst outcome that can
happen is coming to a draw. This means that a NE player wins against
any player not playing a NE strategy. In games involving chance (the
cards dealt at the beginning in the case of Poker), the player may not
win every single game. Thus, many games may have to be played to
evaluate the strategies. A NE strategy is particularly beneficial against
strong players. Therefore, it does not make any mistakes the opponent
could possibly exploit. On the other hand, a NE strategy might not
win over a sub-optimal player by a large margin because it does not
actively try to exploit the opponent but rather tries not to commit any
mistakes at all. There exists a NE for every finite game [41, 42].

2.2.2 Exploitability

Exploitability is a measure for this deviation from a NE [20]. The higher
the exploitability, the greater the distance to a NE, and therefore, the
weaker the player. A NE has an exploitability of zero. A NE strategy
constitutes optimal play, since there is no possible better strategy. How-
ever, there are different NE strategies which differ in their effectiveness
of exploiting non-NE strategies [14]. If it is not possible to calculate
such a strategy (for example, because the state space is too large), we
want to estimate a strategy which minimizes the deviation from a NE.

8 theoretical foundations

2.2.3 Rating Systems

Player strength in general can be measured with a rating system which
compares the player to other players using a score. In Chess and many
other zero-sum games the Elo rating system is used to determine the
strength of a player.

The Glicko rating system improves on the Elo system. Strength
in card games can also be measured with the Elo or Glicko system.
However, as there is randomness involved in many card games, the
number of games against the same opponent has to be much higher
than in PIGs to achieve satisfactory statistical quality for a ranked
encounter. Poker AIs have often been measured using exploitability.

In Go there is additionally a ranking system ranging from double-
digit kyu (30-20k) to professional dan (1-9p) level.

2.2.4 Comparison to Humans

When designing AIs it is always interesting to evaluate how well
they perform in comparison to humans. Here we distinguish four
categories: sub-human, par-human, high-human and super-human
AI which respectively mean worse than, similar to, better than most
and better than all humans. The current best AI agents in Jass achieve
par-human standards. In Bridge, current computer programs achieve
expert level, which constitutes high-human proficiency. In many PIGs

like Go or Chess, current AIs achieve super-human level.

3
T H E C A R D G A M E J A S S

In this chapter, we briefly introduce the Jass card game together with
necessary terminology, discuss its complexity from a mathematical
point of view and highlight the most prominent similar games.

3.1 jass in a nutshell

Jass is a traditional Swiss card game that is trick-taking and often
played at social events. It involves hidden information, both a cooper-
ative (cooperation within the team) and a non-cooperative aspect (two
opposing teams), is sequential, finite, and constant-sum (since in each
game there are always 157 points).

Figure 3.1: This figure depicts a trick in the Schieber variant. The order of
play is counter-clockwise (Harry started with trump diamond 8).
Ron had to follow suit with his Diamond 6 and Hermine did not
have any Diamonds left, since she played Spades 6. Ginny’s card
(Diamond Jack) wins this trick because it is the highest trump
card. The picture is taken from our Jass server.

9

10 the card game jass

The Schieber variant — our testbed — is one of the most widely
played variants of Jass in Switzerland. It is played with two opposing
teams of two players each. Each round consists of a trump selection
phase and a consecutive card play phase. Since choosing a trump is a
significant advantage, tournaments are played by a fixed number of
rounds (divisible by 4) so that each player can choose trump an equal
number of times. Trump selection implies that the selecting player can
determine one of the four suits as trump or alternatively no trump
with the card precedence top down or bottom up respectively. The
player can also decide to pass on the decision to his teammate. This is
called "schieben" and gave the name to the game. An example Schieber
trick is shown in Figure 3.1.

3.2 terminology

4 played cards are called a trick, 9 tricks are a round (all 36 cards played)
and a game lasts for 1000 points, or in tournaments for a number of
rounds. When a player passes in trump selection, the partner can
nominate the trump.

Figure 3.2: This figure depicts the cards used in Jass. In the eastern part of
Switzerland the German set is used more often and in the western
part the French set is predominant. Image taken from Swisslos.

3.3 complexity 11

The Swiss Intercantonal Lottery provides a guide for general Jass
rules1 and for the variant Schieber specifically2. They also provide
hints and conventions about Jass3 and the Jass Club Kilchberg also
provides hints for how to play the Schieber variant well4 Figure 3.2
displays the cards used in Jass.

3.3 complexity

In Schieber, the number of possible paths through the game tree is
36! = 3.72e41 since there are 36 cards in the game because every card
is only played once, and the order matters.

At the beginning of the game the cards are being dealt randomly to
the players. There are(

36
9

)(
27
9

)(
18
9

)(
9
9

)
= 2.15e19

possibilities to distribute the 36 cards to 4 stacks. After the cards have
been dealt, each player knows their cards, so the possible distributions
of the other cards are 2.28e11.

To estimate the number of possibilities that a round can be played,
we gathered empirical evidence from 1.8 million played rounds (see
Section 11.1 for the data) to determine the number of valid plays
permitted by the rules for each of the 36 cards played. We found 5.1e16
possible playouts, so the number of states that an algorithm has to
deal with after receiving the cards is in the order of 5.1e16 · 2.28e11 =

1.16e28.

3.4 similar games

Jass is very similar to other trick-taking card games like the French
Belote, the German Skat and the British Contract Bridge. In Skat,
Bridge, and the Sidi Barani variant of Jass, the trump is determined at
the start of the game with a process called bidding. Many trick-taking
card games have a variant involving four players divided into two
teams, like in Schieber.

In contrast to Bridge, Skat, or Hearts, in Jass, it is allowed to play
trump at any point in the game, even when the player can still follow
suit. This brings more possibilities and thus makes card play harder.

1 www.swisslos.ch/en/jass/informations/jass-rules/principles-of-jass.html

2 www.swisslos.ch/en/jass/informations/jass-rules/schieber-jass.html

3 https://www.swisslos.ch/en/jass/informations/tips-from-the-jass-expert/

schieber-jass.html

4 https://jassclubkilchberg.jimdo.com/app/download/8968421285/Tipps+

Schieber1309.pdf?t=1551874362

www.swisslos.ch/en/jass/informations/jass-rules/principles-of-jass.html
www.swisslos.ch/en/jass/informations/jass-rules/schieber-jass.html
https://www.swisslos.ch/en/jass/informations/tips-from-the-jass-expert/schieber-jass.html
https://www.swisslos.ch/en/jass/informations/tips-from-the-jass-expert/schieber-jass.html
https://jassclubkilchberg.jimdo.com/app/download/8968421285/Tipps+Schieber1309.pdf?t=1551874362
https://jassclubkilchberg.jimdo.com/app/download/8968421285/Tipps+Schieber1309.pdf?t=1551874362

4
R E L AT E D W O R K

In this chapter we review the relevant related work. In their book,
Yannakakis et al. [75] gave a general overview of AI development in
games, while Rubin et al. [51] provided a more specific review on the
methods used in computer Poker. In his thesis, Burch [12] reviewed the
state-of-the-art in Counterfactual Regret Minimization (CFR), a family
of methods very heavily used in computer Poker. Finally, Browne et
al. [11] surveyed the different variants of MCTS, a family of methods
used for AIs in many games of both perfect and imperfect information.
We are not aware of any work that specifically addresses the domain
of card games.

Related work about the methods used in card games is presented in
the Sections 5, 6, 7 and 8.

13

Part II

S TAT E O F T H E A RT A N D B E Y O N D

In this part we provide a detailed literature overview of
the state-of-the-art AIs in card games.

5
R U L E - B A S E D S Y S T E M S

In this chapter we give the gist of RB methods and list applications to
card games.

Rule-based systems leverage human knowledge to build an AI player
[75]. Many simple AIs for card games are rule-based and then used
as baseline players. This mostly entails a number of if-then-else state-
ments which can be viewed as a man-made decision tree.

Ward and Cowling [70] created a rule-based AI for Magic: The Gath-
ering which was used as a baseline player. Robilliard, Fonlupt, and
Teytaud [49] developed a rule-based AI for 7 Wonders which was used
as a baseline player. Watanabe and Lanzi [71] implemented three rule-
based players. The greedy player behaves like a beginner player. The
other two follow more advanced strategies taken from strategy books
and are behaving like expert players. Osawa [48] presented several
par-human rule-based strategies for Hanabi. His results indicated that
feedback-based strategies achieve higher scores than purely rational
ones. Bergh et al. [2] developed a strong par-human rule-based AI

for Hanabi. Whitehouse et al. [73] evaluated the rule-based Spades
player developed by AI Factory. Based on player reviews they found it
to decide weakly in certain situations but to be a strong par-human
player overall.

17

6
R E I N F O R C E M E N T L E A R N I N G M E T H O D S

In this chapter we provide a short explanation of Reinforcement Learn-
ing (RL) and list applications to card games.

RL is a machine learning method which is frequently used to play
games. It consists of an agent performing actions in a given environ-
ment. Based on its actions, the agent receives positive rewards which
reinforce desirable behaviour and negative rewards which discourage
unwanted behaviour. Using a value function, the agent tries to find
out which action is the most desirable in a given state.

Rong, Qin, and An [50] use two DNNs with self-play RL to learn a
policy which beat the top rule based player in the Bridge bidding phase.
The estimation neural network infers the cards of the partner and the
policy neural network selects bids based on the public information and
the output of the estimation neural network. Tian et al. [67] use two
DNNs for learning non-competitive bridge bidding. The belief network
models the other agent’s private information and the policy network
forms a distribution over actions based on the belief network. Foerster
et al. [23] establish a new state-of-the-art in two-player Hanabi using a
training algorithm they call Bayesian Action Decoder. They measure
superior performance than Recurrent Neural Networks (RNNs) and
networks trained with Policy Gradient (PG). [35] improve on this and
other previous methods by adding search achieving state-of-the-art
performance in 2, 3, 4 and 5-player Hanabi.

6.1 temporal difference learning

Temporal Difference Learning (TDL) updates the value function con-
tinuously after every iteration, as opposed to earlier strategies which
waited until the episode’s end [65].

Sturtevant and White [63] developed a sub-human AI for Hearts
using Stochastic Linear Regression and TDL which outperforms players
based on minimax search.

6.2 policy gradient

PG is an algorithm which directly learns a policy function mapping a
state to an action [64, 65]. Proximal Policy Optimization (PPO) [56] is
an extension to the PG algorithm improving its stability and reducing
the convergence time and improvement by simplification over Trust
Region Policy Optimization (TRPO) [55].

Charlesworth [16] applied PPO to Big 2, reaching par-human level.

19

20 reinforcement learning methods

6.3 counterfactual regret minimization

CFR [76] is a self-playing method that works very well for IIGs and has
been used by the most successful poker AIs [7, 40]. “Counterfactual”
denotes looking back and thinking “had I only known then...”. “Re-
gret” says how much better one would have done, if one had chosen
a different action. And “minimization” is used to minimize the total
regret over all actions, so that the future regret is as small as possible.
Note that CFR only requires memory linear to the number of informa-
tion sets and not to the number of states [51]. Additionally, CFR has
been able to exploit non-NE strategies computed by Upper Confidence
Bound for Trees (UCT) agents in simultaneous games [57].

6.3.1 Counterfactual Regret Minimization+

CFR+ is a re-engineered version of CFR, which drastically reduces
convergence time. It always iterates over the entire tree and only allows
non-negative regrets [4]. Bowling et al. [4] used CFR+ to essentially
solve heads-up limit Texas hold’em Poker in 2015.

Moravčík et al. [40] developed a general algorithm for imperfect
information settings, called DeepStack. With statistical significance, it
defeated professional poker players in a study over 44000 hands.

6.3.2 Deep Counterfactual Regret Minimization

Deep CFR [5] combines CFR with deep Artificial Neural Networks
(ANNs). Brown et al. [7] leverage deep CFR to decisively beat four top
human poker players in 2017 with their program called Libratus. First,
they build a blueprint strategy using deep CFR [5] which is applied
in the general case. When an action is not in this strategy, or as soon
as the remaining game tree is sufficiently small, they apply nested
subgame solving to devise a better solution for this particular part
of the game [6]. Using this approach they solved a major problem in
subgame solving in IIGs, namely that one subgame may depend on
other unreached ones.

Depth-Limited Solving [10] makes nested subgame solving already
possible in the early game by specifying a maximum depth. Using this
approach, comparable performance to state-of-the-art CFR approaches
could be achieved using significantly less computing power.

6.3.3 Discounted Counterfactual Regret Minimization

Discounted CFR [8] matches or outperforms the previous state-of-the-
art variant CFR+ depending on the application by discounting prior
iterations.

6.4 neural fictitious self play 21

6.4 neural fictitious self play

In Neural Fictitious Self-Play (NFSP), two players start with random
strategies encoded in an ANN. They play against each other knowing
the other player’s strategy improving the own strategy. With an in-
creasing number of iterations, the strategies typically approach a NE.
Since NFSP [26] has a slower convergence rate than CFR it is not widely
used.

Heinrich and Silver [26] applied NFSP to Texas hold’em Poker and
reported similar performance to the state-of-the-art super-human pro-
grams. In Leduc Poker, a simplification of the former, they approached
a NE. Kawamura, Mizukami, and Tsuruoka [29] calculated approxi-
mate NE strategies with NFSP in multiplayer IIGs.

6.5 first order methods

First Order Methods (FOM) like Excessive Gap Technique (EGT) are,
like CFR, methods which approximate NE strategies in IIGs. They have
a better theoretical convergence rate than CFR because of lower com-
putational and memory costs. Note that, like CFR, EGT is only able to
approach a NE in two-player games [31].

Kroer, Farina, and Sandholm [31] applied a variant of EGT to Poker
reporting faster convergence than some CFR variants. They argue that,
given more hyper parameter tuning, the performance of CFR+ can be
reached.

7
M O N T E C A R L O M E T H O D S

In this chapter we introduce Monte Carlo (MC) based methods and list
applications to card games.

MC methods use randomness to solve problems that might be deter-
ministic in principle.

7.1 monte carlo simulation

MC Simulation uses a large number of random experiments to numer-
ically solve large problems involving many random variables.

Mizukami and Tsuruoka [38] developed a par-human AI for Japanese
Mahjong using MC Simulation. Kupferschmid and Helmert [32] ap-
plied MC Simulation to Skat to obtain the game-theoretical value of
a Skat hand. Note that they converted the game to a PIG by making
all the cards known. Yan et al. [74] report a 70% win rate using MC

Simulation in a Klondike version, which has all cards revealed to the
player. Note that this converts the game to a PIG.

7.2 flat monte carlo

Flat MC uses MC Simulation, with the actions in a given state being
uniformly sampled [11].

L. Ginsberg [33] achieves world champion level play in Bridge using
Flat MC in 2001.

7.3 monte carlo tree search

MCTS consists of four stages: Selection, Expansion, Simulation and
Backpropagation [11]. Selection: Starting from the root node, an ex-
pandable child node is selected. A node is expandable if it is non-
terminal (i.e. it does have children) and has unvisited children.
Expansion: The tree is expanded by adding one or more child nodes
to the previously selected node.
Simulation: From these new children nodes a simulation is run to
acquire a reward at a terminal node.
Backpropagation: The simulation’s result is used to update the in-
formation in the affected nodes (nodes in the selection path). A tree
policy is used for selecting and expanding a node and the simulation
is run according to the default policy.

Browne et al. [11] give a detailed overview of the MCTS family. In
this section we outline the variants used on card games.

23

24 monte carlo methods

7.3.1 Upper Confidence Bound for Trees

UCT is the most common MCTS method, using upper confidence
bounds as a tree policy, which is a formula that tries to balance
the exploration/exploitation problem [30]. When the search explores
too much, the optimal moves are not played frequently enough and
therefore it may find a sub-optimal move. When the search exploits
too much, it may not find a path which promises much greater pay-
offs and it therefore also may find a sub-optimal move. Minimax is
a basic algorithm used for two-player zero-sum games, operating on
the game tree. When the entire tree is visited, minimax is optimal [75].
UCT converges to minimax given enough time and memory [30].

Sievers and Helmert [58] applied UCT to Doppelkopf reaching par-
human performance. Schäfer [54] used UCT to build an AI for Skat,
which is still sub-human but comparable to the MC Simulation based
player proposed by Kupferschmid and Helmert [32]. Swiechowski,
Tajmajer, and Janusz [66] combined an MCTS player with supervised
learning on the logs of sample games, achieving par-human perfor-
mance. Santos, Santos, and Melo [52] outperformed basic MCTS based
AIs by combining it with domain-specific knowledge. Heinrich and
Silver [25] combined UCT with self-play and apply it to Poker. They
reported convergence to a NE in a small Poker game and argue that,
given enough training, convergence can also be reached in large limit
Texas Hold’em Poker.

7.3.2 Determinization

Determinization is a technique which allows solving an IIG with meth-
ods used for PIGs. Determinization samples many states from the
information set and plays the game to a terminal state based on these
states of perfect information.

Bjarnason, Fern, and Tadepalli [3] studied Klondike using UCT,
hindsight optimization and sparse sampling. Hindsight optimization
uses determinization and hindsight knowledge to improve the strategy.
They developed a policy which wins at least 35% of games, which is a
lower bound for an optimal Klondike policy. Sturtevant [62] applied
UCT with determinization to the multiplayer games Spades and Hearts.
He reported similar performance to the state-of-the-art at that time in
Spades and slightly better performance in Hearts. Cowling, Ward, and
Powley [19] applied MCTS with determinization approaches to the card
game Magic: The Gathering achieving high-human performance and
outperforming an expert-level rule-based player. Robilliard, Fonlupt,
and Teytaud [49] applied UCT with determinization to 7 Wonders
outperforming rule-based AIs. The experiments against human players
were promising but not statistically significant. Solinas, Rebstock, and
Buro [61] used UCT and supervised learning to infer the cards of the

7.4 monte carlo counterfactual regret minimization 25

other players, improving over the state-of-the-art in Skat card-play.
Edelkamp [22] combined distilled expert rules, winning probabilities
aggregations and a fast tree exploration into an AI for the Misère
variant of Skat significantly outperforming human experts.

7.3.3 Information Set Monte Carlo Tree Search

ISMCTS tackles the problem of strategy fusion which includes the false
assumption that different moves can be taken from different states
in the information set [18]. However, because the player does not
know of the different states in the information set, it cannot decide
differently, based on different states. ISMCTS operates directly on a tree
of information sets.

Whitehouse, Powley, and Cowling [72] used MCTS with determiniza-
tion and information sets on Dou Di Zhu. They did not report any
significant differences in performance between the two proposed al-
gorithms. Watanabe and Lanzi [71] presented a high-human AI using
ISMCTS for the Italian card game Scopone which consistently beat
strong rule-based players. Walton-Rivers et al. [69] applied ISMCTS to
Hanabi, but they measured inferior performance to rule-based players.
Whitehouse et al. [73] found an MCTS player to be stronger than rule-
based players in the card game Spades. They integrated ISMCTS with
knowledge-based methods to create more engaging play. Cowling
et al. [17] performed a statistical analysis over 27592 played games
on a mobile platform to evaluate the player’s difficulty for humans.
Devlin et al. [21] combined insights from game play data with ISMCTS

to emulate human play.

7.4 monte carlo counterfactual regret minimization

Monte Carlo Counterfactual Regret Minimization (MCCFR) drastically
reduces the convergence time of CFR by using MC Sampling [34].
MCCFR samples blocks of paths from the root to a terminal node and
then computes the immediate counterfactual regrets over these blocks.

Lanctot et al. [34] showed this faster convergence rate in experiments
on Goofspiel and One-Card-Poker. J. V. Ponsen, Jong, and Lanctot [27]
evidences that MCCFR approaches a NE in Poker.

7.4.1 Online Outcome Sampling

Online Outcome Sampling (OOS) is an online variant to MCCFR which
can decrease its exploitability with increasing search time [36].

Lisý, Lanctot, and Bowling [36] demonstrated that OOS can exploit
ISMCTS in Poker knowing the opponent’s strategy and given enough
computation time.

26 monte carlo methods

7.5 combining rl with mcts

AlphaZero [60] combines MCTS with self-play RL. This architecture can
be applied to imperfect information games as well.

Jiang et al. [28] apply an Alpha-Zero-like architecture to Dou Di
Zhu dominating existing Dou Di Zhu programs and coming close to
expert human level.

8
E V O L U T I O N A RY A L G O R I T H M S

In this chapter we explain the main idea of Evolutionary Algorithms
(EAs) and list applications to card games.

EAs are inspired by evolutionary theory. Strong individuals — strate-
gies in the case of game AIs — can survive and reproduce, whereas
weaker ones eventually become extinct [75]. According to a fitness
function, the strong members of the population (strategies in the case
of a card game) are allowed to mate and produce children (crossover).
Additional to crossover, some mutation is applied to every child, ensur-
ing certain changes to the population. Hence, the population gradually
evolves better and better members.

Mahlmann, Togelius, and Yannakakis [37] compared three EA agents
with different fitness functions in Dominion. They argued that their
method can be used for automatic game design and game balancing.
Noble [47] applied a EA evolving ANNs to Poker in 2002 improving
over the state-of-the-art at the time. García-Sánchez et al. [24] used
an EA to build decks that were better than human-crafted ones in the
collectible card game HearthStone when they were played by their AI.

27

9
S U I TA B L E M E T H O D S F O R A I I N C A R D G A M E S

In this chapter we compare the methods presented in the previous
chapters and give recommendations for which methods to use in card
games and specifically in trick-taking ones like Jass.

MCTS and CFR are the two families of algorithms that have most
successfully been applied to card games.

To the best of our knowledge, CFR has almost exclusively been ap-
plied to Poker so far, although the authors claim that it can be applied
to any IIG [5]. CFR provides theoretical guarantees for approaching
a NE in two player IIGs [76]. On the other hand, as we discussed in
section 2.2.1, pure NE strategies may not be able to specifically exploit
weak opponents. Additionally, CFR needs a lot of time to converge,
compared to MCTS [27].

MCTS has been applied to a plethora of complex card games in-
cluding Bridge, Skat, Doppelkopf or Spades, as we have illustrated in
the previous sections. It finds good strategies fast but only converges
to a NE in PIGs and not necessarily in IIGs [27]. As opposed to CFR,
MCTS does not find the moves with lowest exploitability, but the ones
with highest chance of winning [15]. MCTS eventually converges to
minimax, but total convergence is infeasible for large problems [11].

In our overview, we found many use cases for both the ISMCTS and
the DMCTS variant.

So, if the goal is to find a good strategy relatively fast, MCTS should
be chosen, whereas CFR should be selected, if the goal is to be mini-
mally exploitable [27]. To put it simply, CFR is great at not losing, but
not very good at destroying an opponent and MCTS is great at finding
good strategies fast, but not very good at resisting against very strong
opponents.

DNNs have been used successfully in many AIs for card games in the
literature. AlphaZero-like architectures have been proposed where a
value function learned by a DNN enhances the MCTS rollouts. Often,
DNNs have also been used to provide an estimation of the hidden cards,
since knowledge thereof brings the AI closer to a perfect information
game making good play easier. Since DNNs have successfully been
applied to Bridge [50], we estimate them to be helpful in the game of
Jass too.

29

Part III

E M P I R I C A L E VA L UAT I O N

In this part we present the experiments we conducted and
analyze the results. It has partially been coauthored with
Prof. Thomas Koller for a paper currently under review
at the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS) [43]. The DNN, Iteration-
based Determinized Monte Carlo Tree Search (I-DMCTS)
and ISMCTS bots have been developed by Prof. Thomas
Koller from the University of Applied Sciences in Lucerne.
Additionally, he conducted the value estimation exper-
iments and provided the Jass server infrastructure. Big
thanks for the inspiring cooperation.

10
I M P L E M E N TAT I O N

In this chapter, we document the implementations of our bots.

10.1 time-based determinized mcts

The implementation of the Time-based Determinized Monte Carlo
Tree Search (T-DMCTS) is publicly available on Github1. It uses a ranked
RB trump selection. If no trump surpasses a given threshold, it passes.

It uses a time budget as a termination criterion for the search, so it
can easily be compared to other bots with the same resources. We use
robust child as final selection policy, choosing the most visited node
after the search. It does not use any heuristic function in the tree
policy, does not prune branches, does not bound the scores and uses
the standard exploration constant

√
2, since different configurations

did not improve the performance in our hyper parameter search.
It uses a determinization factor of 15 and runs for 10s per move. This

factor multiplied with the number of tricks remaining in the round
results in the number of determinizations created. Example: In the
third trick, six tricks are remaining (the current trick included). This
means that in this trick, it generates 6 · 15 = 90 determinizations. For
each one we create a thread which after the search returns a selected
move together with a score for this move. Then we bundle together
all of the determinizations for the same moves and average the scores.
Multiplying the average score of a move with the number of times it
has been selected gives us a final score. This final score is then used
for the final selection. This comes with the advantage that not only
the number of times a specific move is selected is considered but also
the estimated score it is associated with.

With a technique called soft-pruning it would be possible to assign
higher probabilities to cards which are likely to be good based on
domain knowledge. The MCTS would then take into account the sup-
posedly good cards more which could improve the playing strength if
a low number of iterations is used. With a high number of iterations it
might limit the algorithm or be not of much use.

10.2 iteration-based determinized mcts and informa-
tion set mcts

The I-DMCTS uses a configurable number of determinization and MCTS

iterations, independent of the time budget, to enable testing of differ-

1 https://github.com/JoelNiklaus/JassTheRipper

33

https://github.com/JoelNiklaus/JassTheRipper

34 implementation

ent configurations. Results for different numbers of determinization
and iterations are given in Section 13.2. The ISMCTS implementation
uses the same framework as the I-DMCTS.

10.3 deep neural network

We implemented two DNNs on the dataset described in Section 11.1.
The card play network computes a value of a given state and chooses
a card to be played. The trump selection network is used in the
beginning in the trump selection phase and chooses one of seven
trumps.

10.3.1 Card Play Network

We trained a DNN to perform 3 different tasks using Supervised Learn-
ing (SL). We a) predict the action a, i.e. the card played by a player
as a policy function p(a|so), b) the value function v(so) and c) the
card distribution probability pcard(player = i|c) that the card c was in
the hand of player i at the beginning of the game. The parameter θ

describes the weights of the DNN, where as so describes the current
state of the game observable by the player.

A single convolutional neural network was used with 3 different
heads and loss functions. The loss function for the policy head is the
cross entropy loss between the predicted action probability p and the
actual action a. The loss of the value prediction is the mean squared
error between the predicted value v and the actual result z of the
game and finally the loss of the card prediction is the sum of the cross
entropy losses between the predicted and actual card distributions
for each player. lpolicy = aT log pa, where aT is the one-hot encoded
vector of the action a. The loss of the value prediction is the error
between the predicted value v and the actual result z of the game
lvalue = (v− z)2 and finally the loss of the card prediction is the sum
of the cross entropy losses between the predicted card distribution
pcard(player = 1|c) and the actual card distribution di(player = i|c for
each player i.

The DNN consists of 6 convolutional layers with 256 channels and
kernel sizes of 2x3 for the first 3 layers, and 1x2, 1x2 and 1x2 for the
following layers, whereby each layer reduces the size of the input
as valid padding is used. The 6 layers result in a 1x256 vector that
connects to each loss function by a fully connected layer. The total loss
is calculated as the weighted sum of the 3 losses, whereas the weights
are chosen so that they scale the magnitude of each loss in the same
range i.e., each loss will contributes the same.

The input to the DNN is a 4x9 matrix of 43 channels containing all
the information available to the player. This consists of the cards that
have been played so far and in which trick and by which player, the

10.3 deep neural network 35

cards in the hand of the current player and the valid cards to play, as
well as global information about the game, i.e. who declared trump,
how many cards have been played so far and how many points has
each team achieved.

This consists of the cards that have been played so far and by which
player (4 channels), in which trick (9) and in which order in the trick
(4) they have been played, the cards of the current trick (3), the cards
in the hand of the player (1), the valid cards to play (1) followed by
layers with constant values indicated the selected trump, the player
who choose trump and if it was declared forehand (= not passed), the
dealer, the current player, the number of tricks and cards played and
the points achieved in the game so far.

Training was done for 200 epochs using an Adam optimizer. R2
regularization was enabled on all weights, but no dropout or batch
normalization was used. Training achieved an accuracy of 0.776 for
the policy, and 0.771 for the card distribution and Mean Squared
Error (MSE) of 0.016 for the value function.

Convolutional networks outperformed similar fully connected net-
works using the same input by 4% in card accuracy, 2% in the card
distribution and 10% in the MSE for the value function.

We also trained a second neural network to predict the policy
function for the action a p(a|s) and the value v(s) from the complete
state s that includes the cards of all the players. This network achieves
a much lower MSE on the value function as 8.29× 10−3 as can be
expected. Also, the policy receives a slightly higher accuracy of 0.793,
even as the players on which decisions the DNN was trained, did not
have the information about the other player’s cards available and must,
therefore, deduced some of it.

We use the card-distribution prediction in variants of the search algo-
rithms as Probability Determinized Monte Carlo Tree Search (P-DMCTS)
and Probability Information Set Monte Carlo Tree Search (P-ISMCTS)
to draw cards according to the predicted distribution during deter-
minization. The value function is used as a card play algorithm by
evaluating all valid cards and selecting the one with the highest value.

10.3.2 Trump Selection Network

Trump selection was trained by a different DNN that uses only the
cards in the hand of a player as input, as well if the player is the first or
second player of the team to be asked to declare trump. The network
consists of two fully connected layers with 592 channels followed by
a fully connected layer with 7 channels, which corresponds to the
7 possible actions (4 colors, top-down, bottom-up and passing). The
accuracy of the network reached 0.8193 on the validation set. Deeper
networks did not perform better.

11
G E N E R A L E X P E R I M E N TA L S E T U P

In this chapter, we first describe the data sets used for training the
DNN and for evaluations, second the technical infrastructure used for
carrying out the experiments and finally the tournament setup.

11.1 data sets

Data for training and evaluation was taken from an online platform1,
where users can play the game and either register or play anony-
mously.

The collected data is from a period of 6 months, starting in October
2017 and consists of about 1.8M played rounds. Each round consists
of playing 36 cards, and only completed rounds were taken. The data
is split into training, validation, and test sets with a ratio of 0.6:0.2:0.2
by random selection. As plays from the same round are correlated, we
further split the files into records for single card plays and shuffle them
randomly. From this data set, we filtered out plays by all players that
performed less than average, i.e., did not get an average score of 78.5
points. This also eliminates the unregistered players who performed
with 78.43 points on average. The resulting data set contains about
14M card plays in the training set and about 4.8M card plays in the
test and validation sets.

11.2 technical infrastructure

We provide a gym environment for the Schieber variant2 so RL meth-
ods can easily be tested. We publish repositories for a Jass server
(deployment3 and sources4) that can run games and tournaments and
display the results, as well as a Python development kit to implement
algorithms.

Any bot implementing a Representational State Transfer (REST) API5

can be connected to the Jass server. We also provide a Graphical User
Interface (GUI)6 allowing humans to play on the Jass server7.

1 https://www.swisslos.ch

2 https://github.com/JoelNiklaus/gym-jass

3 https://jass-server.abiz.ch

4 https://gitlab.enterpriselab.ch/jass/info/

5 https://jasschamp.ch/wp-content/uploads/2019/09/JassInterface.pdf

6 https://github.com/JoelNiklaus/jass-server

7 https://jassteppich.abiz.ch

37

https://www.swisslos.ch
https://github.com/JoelNiklaus/gym-jass
https://jass-server.abiz.ch
https://gitlab.enterpriselab.ch/jass/info/
https://jasschamp.ch/wp-content/uploads/2019/09/JassInterface.pdf
https://github.com/JoelNiklaus/jass-server
https://jassteppich.abiz.ch

38 general experimental setup

11.3 tournament setup

Friendly Jass matches are played until an agreed number of points is
reached. Tournaments, however, are usually played for a number of
rounds, and the number of points over all rounds are accumulated.

In many card games like Jass, Bridge and Skat, cards are dealt at
random in the beginning, and it is much easier to get more points
with a good hand than with a bad one. This randomness makes it
hard to compare the absolute strength of players.

We address this issue in our experiments by dealing the cards dealt
to the North/South pair in the first game to the East/West pair in the
second round, which we call a double round. We compare the perfor-
mance of two bots against each other by playing 10 times 100 rounds
(= 50 double rounds) and report the mean and the Standard Devia-
tion (STD) of the accumulated score over the 100 rounds. However, for
human playing, this feature is disabled, as they would remember the
cards and so the cards are dealt entirely at random.

For more reliability, we disabled additional points awarded to card
combinations like Melds (Weisen) and Marriages (Stöck) as well as the
Matchbonus (100 points if a team wins all tricks in a round).

12
VA L U E E S T I M AT I O N C O M PA R I S O N

In this chapter we compare different methods to estimate the value
of a current game state. We assume that estimating the value better
leads to a better overall card play performance.

setup

After DMCTS samples a determinization, the algorithm finds itself in
a perfect information game situation, so that all the cards are known.
To evaluate algorithms in this setting, we omit the sampling and give
them the perfect information of the card distribution. The experiment
is performed on the validation set (described in Section 11.1).

As a baseline comparison, we plot the value estimation from the
DNN, which, however, only uses information about the cards in the
hand of the current player. The DNN Max. Policy is used to compute a
heavy rollout, resulting in a score of the game at the end of the round.
The average of a different number of random rollouts (without any
tree search!) is also listed. Finally, different numbers of MCTS iterations
with random rollout are shown. To calculate the estimated value, we
multiply the probability of an action with the value of that action and
sum this for all actions. All the methods have access to the hidden
information except DNN Value.

results

Figure 12.1 shows the results of the different investigated methods.
While the improvement from 25 random rollouts to 10 is evident, the
improvement of 1000 to 25 random rollouts is only marginal. The DNN

value function seems to be comparable to the average of 10 random
rollouts. The policy function does not give significantly better results
than using random rollout with 1000 iterations or 100 MCTS iterations.
The accuracy of the MCTS based value estimation improves clearly
with the number of iterations.

analysis

Random rollouts do not seem to improve much after a number of
iterations have been reached, while MCTS continually improves the
accuracy with more iterations. We expect that this improved accuracy
translates to stronger overall card play. Overall, already 100 MCTS

iterations outperform both 1000 random rollouts and the DNN Max

39

40 value estimation comparison

4 8 12 16 20 24 28 32 36
0

0.5

1

1.5

2

2.5

3

·10−2

Number of cards played in the round

M
ea

n
Sq

ua
re

d
Er

ro
r

Comparisons of Value Estimation Methods

DNN Value
DNN Max Policy Rollout
Avg. Random Rollout (10)
Avg. Random Rollout (25)
Avg. Random Rollout (1K)
MCTS Iterations (100)
MCTS Iterations (5K)
MCTS Iterations(100K)

Figure 12.1: We calculated the MSE between the estimated value from the
algorithm and the actual outcome at the end of the round. Since
the validation set contains 4.8M card plays in total it contains
133K card plays per game stage (number of cards played) on
average. Each data point therefore represents the mean of the
MSEs of these 133K card plays.

Policy rollout in the perfect information game setting. The difference
between the investigated methods is particularly evident in the first
few tricks (0 to 24 cards played). Our analyses show that this phase is
also the most crucial time in a round. The further the round progressed,

value estimation comparison 41

the easier it becomes to play optimally and thus, the smaller the
difference between different bots.

13
E X P E R I M E N T S B E T W E E N B O T S

In this chapter we describe the experiments we conducted between
different bots.

In Section 13.2 we describe experiments with DMCTS hyper param-
eters. Since Jass consists of two distinct phases (trump selection and
card play) we can also separately evaluate our bots in these two phases,
explained in detail in Section 13.3 and 13.4 respectively. In all of these
experiments between bots we used double rounds (see Section 11.3)
to reduce randomness.

Note that already a small difference in points between two teams
can lead to a victory in a Jass game, like in a ski race a difference of
0.5s can bring an athlete from outside the top 20 to winning the gold
medal. Therefore, even if there is a considerable amount of variance a
slight improvement in the mean performance can be important.

13.1 experiment setup

In this section we describe the general experimental setup for the
experiments between bots. Each experiment consists of playing a
game of 100 rounds (= 50 double rounds) 10 times. We report the
mean percentage of total points and the STD of the 10 different games.
The p-value has been calculated with an unpaired t-test.

13.2 hyper parameters for determinized monte carlo
tree search

We conducted several experiments to find the best hyper parameters
for DMCTS. The factors we investigated were the number of deter-
minizations, the number of iterations and the exploration factor.

13.2.1 Determinizations and Iterations

Given a specified number of iterations to be performed, or a specific
time constraint, we investigate if it is better to have a larger number of
determinizations, thus exploring many different card configurations,
or if it is better to devote more resources to the MCTS giving a more
accurate result for the cards.

43

44 experiments between bots

Setup

In this experiment we pitted two I-DMCTS players with different alloca-
tions of determinizations and iterations of a total budget against each
other.

Results

The first four results in Figure 13.1 (blue) show an overview of the
performance of DMCTS with different allocations of a fixed budget
against DNN Max Policy. The budget is 800K iterations (e.g., 20K
determinizations with 40 iterations each, or 500 determinizations with
1600 iterations each).

Analysis

We find that an increase in the number of determinizations is beneficial
up to a certain point (p = 0.015 for 1Kx800 and 500x1600). However,
further increasing the number of determinizations to over 1K shows
no improvement. We find the sweet spot with this particular budget
to be at 1K determinizations with 800 iterations each.

13.2.2 Exploration Constant

In pure MCTS experiments we have found that an exploration factor of
0.2 gives the best results. In this experiment we investigate the optimal
exploration factor for DMCTS.

Setup

In this experiment we pitted two I-DMCTS players with different explo-
ration factors against each other.

Results

The last four results in Figure 13.1 (red) show an overview of the
performance of different exploration parameters each with a fixed
budget of 1000 determinizations and 1000 iterations each.

Analysis

In DMCTS, much larger exploration values than for pure MCTS result in
better performance. We find the standard value of around

√
2 to show

the highest mean value (p = 0.13 for 0.5 and 1.5) This corresponds with
the findings of Browne et al. [11], stating that for perfect information
games, very low exploration constants are optimal, but for imperfect
information games, the value lies higher.

13.2 hyper parameters for determinized monte carlo tree search 45

50
0x

16
00

10
00

x8
00

40
00

x2
00

20
00

0x
40 0.5 1.0 1.5 2.0

0.48

0.5

0.52
Pe

rc
en

ta
ge

of
to

ta
lp

oi
nt

s

I-DMCTS! vs. DNN! Max. Policy (100 rounds)

Figure 13.1: Different configurations of I-DMCTS playing against DNN Max.
Policy. The first four results (blue) show different ratios between
the number of determinizations d and MCTS iterations i (d× i),
while the last 4 results (red) show different exploration parame-
ters c each executed with d = 1000 and i = 1000.

13.2.3 Scalability

In Section 12 we saw that a bigger number of MCTS iterations can
increase the accuracy of estimating the value at the end of the game.
In this section we present an experiment that checks if more iterations
and more determinizations really are beneficial to the overall card play
strength (measured in percentage of total points).

Setup

In this experiment we pitted two I-DMCTS players with different con-
figurations of determinizations and iterations against each other.

Results

Table 13.1 shows different combinations of iterations and determiniza-
tions of DMCTS against DNN which allows us to interpret the scalability
properties of DMCTS.

Analysis

With 25 determinizations there is a strong improvement from 25 to
100 iterations (p < 0.01). However, our data does not clearly support
an improvement from 100 to 10K iterations (p = 0.29). Yet, for 100
determinizations, there is an increase from 100 to 10K iterations (p =

0.023). Increasing both the determinizations and the iterations clearly
has a positive effect on the overall card play strength (p < 0.0001 for
25x25 to 1Kx1K). When the number of determinizations or iterations

46 experiments between bots

Table 13.1: Percentage of total points of I-DMCTS playing against DNN
with different number of determinizations and iterations and
exploration constant 1.5.

Iter. Determinizations

25 100 1K 10K

25 48.07± 0.85 48.76± 1.58 49.45± 1.00 50.02± 1.34

100 49.53± 1.10 49.92± 0.66 49.89± 1.21 49.55± 0.97

1K 50.11± 1.27 50.30± 0.93 50.65± 0.66 50.75± 1.34

10K 49.98± 0.71 50.79± 0.89 50.38± 1.02 very costly

are high though (1Kx1K to 10Kx1K and to 1Kx10K), our data does not
support clear claims. It would be very interesting to see how the card
play strength changes from 1Kx1K to 10Kx10K and further to 1Mx1M.
However, running experiments in these dimensions are very costly
(10Kx10K would take 600h (25 days) on a 8 core machine running 16
threads).

Since increasing the number of determinizations and iterations
comes with high computational costs it is not a feasible options for
running such a highly scaled AI in production. In many algorithms
it is possible to trade time (computation) for space (memory). So
far though, we have not found a suitable way to do this for DMCTS.
However, learning a good policy and representing it in memory –
what the DNN does – is a good alternative to the problem of the
computational resources at runtime.

13.3 trump selection phase

In this section we analyse different trump selection methods.

Setup

To evaluate the trump selection methods, we let four different trump
selection methods play against each other while using the same card
play algorithm, DNN, for all of them. DNN card play is fast, robust, and
deterministic, putting no additional variance into the experiment.

The four trump selection methods we tested were the following:
First, the Random chooses the trump completely randomly. The Simple
RB method tries to estimate the number of certain tricks that can be
won. The Ranked RB implements a ranking algorithm and is used in
T-DMCTS. The MCTS method considers the trump selection as just
another move in the tree to be searched. Finally, the DNN performs
trump selection as described in Section 10.3.

13.4 card play phase 47

Table 13.2: Percentage of total points of different trump selection algorithms
playing against DNN.

Bot Result (%)

Random 34.19±2.02

Simple Rule 47.69±0.82

Ranked Based Rule 49.26±1.11

MCTS 48.23±1.98

Results

The results are shown in the Table 13.2 for playing 100 rounds 10
times as described in Section 11.3. DNN achieves the best results, while
the more elaborate RB algorithm based on the ranking is only slightly
worse (p = 0.063 for DNN and Ranked RB).

Analysis

Trump selection proves quite essential, as even a simple algorithm is
much better than random selection, so a good bot must combine good
trump selection and card play. In Schieber, passing can be very valu-
able in trump selection, since more information is available afterward.
The player who selects trump after the first one passed knows for
example that the first player does not have very good cards to choose
a trump. So, with passing, the players have another shot at a good
trump. We analyzed the choices of the MCTS based trump selection
method and noticed that it rarely passes. This may be a reason for it
to perform worse than the DNN method (p = 0.012).

13.4 card play phase

In this section we analyse different card play methods.

Setup

To evaluate the different card play algorithms, we let them play against
each other with the settings described in Section 11.3. The DMCTS

and ISMCTS are the bots as described in Section 7.3. The RB bot1 is a
baseline bot and builds on the Jass Challenge environment released
by the Software Engineering company Zühlke2. It won the Zühlke
Jass Challenge Competition in 2017. The T-DMCTS RB rollouts uses RB

1 https://github.com/Murthy10/pyschieber/tree/master/pyschieber/player/

challenge_player

2 https://github.com/webplatformz/challenge

https://github.com/Murthy10/pyschieber/tree/master/pyschieber/player/challenge_player
https://github.com/Murthy10/pyschieber/tree/master/pyschieber/player/challenge_player
https://github.com/webplatformz/challenge

48 experiments between bots

Ran
dom

M
ax

Valu
e (10

00
)

ISM
CTS

P-IS
M

CTS

I-D
M

CTS

P-D
M

CTS

T-D
M

CTS

Chea
tin

g M
CTS

0.3

0.4

0.5

0.6

Pe
rc

en
ta

ge
of

to
ta

lp
oi

nt
s

Against DNN Max. Policy

Figure 13.2: Each experiment consists of playing a game of 100 rounds (= 50
double rounds) 10 times, and the average received percentage of
total points is shown. The error bar is the STD of the 10 different
games.

rollouts instead of random rollouts. The random bot selects a random
card while using DNN for trump selection, the Max Value bot evaluates
the value network for each valid card out of 1000 card distributions
and plays the card with the highest value. The P-DMCTS and P-ISMCTS

bots use the probability distributions of the cards from the DNN and
draw cards according to this distribution instead of random cards. The
cheating MCTS has access to the hidden information (the cards of the
other players) and is added as an upper bound.

Results

Figure 13.2 displays the results of the different bots against the DNN

method, while Figure 13.3 compares the strength of different bots
against the T-DMCTS method. The bots are configured with their best
settings; comparisons between different settings are explored more in
the following sections.

Analysis

As expected, knowledge of the unknown cards is precious, which
can be seen in the big jump in strength by the cheating MCTS player.
However, surprisingly, having access to the probability distributions
of the cards does not improve the card play strength compared to
just sampling random cards (p = 0.046 for P-DMCTS and I-DMCTS and
p = 0.17 for P-ISMCTS and ISMCTS). Rather, the variance increases,

13.4 card play phase 49

Ran
dom RB

ISM
CTS

I-D
M

CTS

DNN
M

ax
. Polic

y

T-D
M

CTS RB
Roll.

Chea
tin

g M
CTS

0.3

0.4

0.5

0.6
Pe

rc
en

ta
ge

of
to

ta
lp

oi
nt

s

Against T-DMCTS

Figure 13.3: Each experiment consists of playing a game of 100 rounds (= 50
double rounds) 10 times, and the average received percentage of
total points is shown. The error bar is the STD of the 10 different
games.

suggesting that there are both occasions where the DNN guessed the
distribution of the cards correctly and others where it did not.

14
E X P E R I M E N T S A G A I N S T H U M A N P L AY E R S

In this chapter we describe the experiments we conducted against
human players.

The goal of these experiments is to a) assess how the bots actually
fare against human players and b) to get feedback on how it feels for
a human to play in a cooperative fashion with a bot. To this end, we
designed two sets of experiments: two human vs. two bots (Section
14.1) and one human and a bot vs. two bots (Section 14.2). In both
scenarios the opposing team is composed of two bots of the same type.
In all our experiments against human players we used single rounds
(as opposed to the double rounds used in the bots-only experiments)
since it would be too easy for human players to remember the cards
from the previous round and exploit this advantage. At the end of
each session, the human player has been asked to provide feedback
in which they need to evaluate both their own performance (self-
evaluation) and the bots performance (external-evaluation). Given the
difficulty – and expensiveness, both in terms of time and money –
of collecting large amount of results and the ever-present problem
of assessing the true strength of a human player, our results cannot
be used to draw a final conclusion on whether humans still have the
upper hand in this game against AI.

14.1 human team vs bot team

Having a complete human team play against a bot team is arguably
the best way to really judge if the bots already have the upper hand
against humans. In this section we present our experiment with human
teams against teams of T-DMCTS players.

Setup

Conducting experiments involving two humans against two bots poses
a number of challenges such as the logistics of having the people being
available at the same time and the extra measures that need to be
taken to ensure that humans are not cheating (e.g. ensuring players do
not communicate with each other, thus gaining an unfair advantage).

In our experiments we had 6 distinct human teams play 136 rounds
against a team of T-DMCTS players. It is important to mention that the
human teams have played together before and consist of advanced
players having 15 years of experience in Jass on average.

51

52 experiments against human players

Results

The human team scored 49.5%± 14.2% of the points against the team
of T-DMCTS players.

Analysis

Since we cannot use double rounds against humans and the humans
may differ in strength, the variance is high in comparison to experi-
ments between bots. However, it seems to be compatible with our data
that the T-DMCTS player is able to compete with the human teams.

14.2 human and bot vs bot team

In a setup of a human with a bot partner vs. 2 bots, it is challenging
to assess the impact of the robot-partner on the game outcome. This
is because being an excellent partner to a human might be even
more complicated than just being an excellent partner to a sibling bot
(which will have the same “view“ on the game as the bot itself). A
good “human-partner-bot“ should be playing according to common
human practices. This includes “taking into consideration the human
partner’s way of playing“ and establishing legal ways of signaling
between the team-players (e.g., discarding policies). These problems
are very similar to the ones described in the Hanabi Challenge [1] and
are an open area of research in AI.

Setup

We randomly assigned one of the following three bots to be the partner
of the human: DNN Max. Policy, I-DMCTS with DNN trump selection
and T-DMCTS with RB trump selection. The humans did not know if
their partner was human or a bot. In the end, we asked each player if
they thought their partner was human or a bot.

Results

Table 14.1 gives an overview of the strength of the three methods
against single humans in a total of 960 played rounds. 20% of the
players thought their partner was human.

Analysis

In our preliminary results, the DMCTS bots seem to perform slightly
better against the humans than the DNN (p = 0.17 for DNN and I-DMCTS

and p = 0.0007 for DNN and T-DMCTS). Interestingly, when its time

14.3 human players feedback 53

Table 14.1: Percentage of total points of different bots against single humans
(Higher numbers in result column are better). #Distinct lists the
number of distinct human players.

Bot #Rounds #Distinct Result (%)

DNN 68 13 49.79±8.81

I-DMCTS 60 14 52.09±9.85

T-DMCTS 832 47 55.53±13.74

budget is larger, the DMCTS player get more aggressive (smear aces,
play trump 9 on an empty trick) and pull trumps more often at the
beginning.

14.3 human players feedback

We received a survey response from 40 of the 74 participants in the
experiment, where the humans had a bot partner and played against
a bot team. The overall self-assessed level of Schieber competence of
the human participants is quite high; 70% rate their ability as ”strong”
(4) or ”very strong” (5) out of 5.

From the participants qualitative feedback we can conclude that
humans strongly base their decision whether their partners are a bot
(or not) on the time they take to play a card. This was evaluated at
different moments in the game: while in the beginning it is human-
like to take a long time to think about your move, this is no longer
the case when there are only few remaining cards (as the moves
are often constrained or very clear). Moreover, human players seem
to be sensitive to the way trumps are played i.e., bots are at times
deemed to be very aggressive players and occasionally blamed for not
pulling all the trumps (Austrumpfen). The humans were positively
surprised with the bots using the strategy of playing high value cards
when the trick belongs to the partner (Schmieren). In bottom up,
a human might play a sequence of 6 to 9 in ascending order. The
bots, however, played them in any order, somewhat confusing the
humans. Advanced coordination techniques like leading a trick with
a suit where the player is strong or signalling a strong suit are not
implemented explicitly and are according to the humans also not
found implicitly by the bots.

15
A N A LY S I S

In this chapter we summarize the most important findings of the
experiment chapters.

15.1 value estimation

For value estimation we investigated the average of different numbers
of random rollouts, the DNN Max. Policy and a different numbers of
MCTS iterations. The accuracy of using the average of random rollouts
increased up until around 25 rollouts but plateaued afterwards. This
is also comparable to the accuracy of the DNN Max Policy. Already
100 MCTS iterations outperform both the aforementioned methods.
Additionally, 100K iterations still outperformed 5K iterations and it is
likely that further increasing the number of iterations will increase the
accuracy.

15.2 mcts hyperparameters

We experimented with the number of iterations i and determinizations
d and also with different exploration factors c. We found that increas-
ing the number of determinizations and iterations simultaneously
leads to overall higher playing strength in our DMCTS bot (p < 0.0001
for 25x25 to 1Kx1K). Our data shows that the sweet spot for a budget
of 800000 (d× i) is at 1000× 800. When using 1000 determinizations
and 1000 iterations we found the best exploration factor to be 1.5.
Although the variance of these experiments is comparably high, small
differences should not be disregarded, since in a tournament a very
small difference in points can be responsible for a victory.

15.3 trump selection

We compared different trump selection methods by evaluating the
chosen trump games with the deterministic and fast DNN Max. Policy.
We found the DNN trump to beat all other investigated trump selection
methods. However, the ranked rule based method came a very close
second (49.26%± 1.1% of the points against DNN).

15.4 card play

We compared different bots in the card play phase against both the
DNN Max. Policy and the T-DMCTS. Both bots clearly outperformed

55

56 analysis

the random baseline and both also won against the ISMCTS bots. The
T-DMCTS also clearly beat the rule-based baseline method. We also
observed that an MCTS bot having access to the hidden information
clearly beats both the non-cheating DNN Max Policy and the T-DMCTS

bot. Replacing the random rollout with a rule-based rollout did not im-
prove the performance of DMCTS. Similarly, using the DNN to estimate
the hidden cards and sampling from this distribution did not improve
the performance of neither ISMCTS nor DMCTS. Given enough compu-
tational resources, the DMCTS is able to beat the DNN Max. Policy by a
small margin.

The “Bitter Lesson“ from Rich Sutton1 states that domain knowledge
is not a viable approach to AI in the long term but loses against search
and learning based methods. Our results confirm this, with the DMCTS

and DNN outperforming RB methods.

15.5 human experiments

We conducted preliminary experiments against humans testing how
the bots fare in the real world.

The 6 human teams scored 49.5% ± 14.2% of the points against
T-DMCTS in 136 played rounds. The human teams had 15 years of
experience on average and have played together before. So we conclude
that DMCTS is able to compete with experienced amateur human teams.
The large STD can be explained through the randomness of the dealt
cards.

The experimental setup for only one human is simpler since we
do not need to ensure that the human participants do not cheat.
This allowed us to collect a bigger dataset here. We found the 47
humans matched up with DMCTS partner to score 44.47%± 13.74%
of the points against the DMCTS team in 832 rounds. The mean is 5%
smaller than the mean of the human teams. Our data supports the
conclusion that the human teams played much stronger than the single
humans matched up with DMCTS against a DMCTS team (p < 0.0001).
A possible explanation might be that the humans expected their DMCTS

partner to conform to some conventions, which it presumably did
not. This might have led to confusions on the side of the humans,
making them play bad moves. Additionally, the human teams might
be coordinating together well. Another explanation might be that the
humans in the teams experiments are simply better players.

In addition to the played games we also asked the humans to fill in a
survey. Their summarized qualitative feedback states that the humans
were positively surprised by how well the bots played high value cards
when the trick belonged to their partner (Schmieren). They also found
the overall playing style of the bots to be very aggressive (trump play

1 http://www.incompleteideas.net/IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

15.5 human experiments 57

and smearing aces). Finally they noted that the bots did not adhere to
common signalling practices followed by advanced human players.

Part IV

C O N C L U S I O N A N D O U T L O O K

In this part we draw conclusions and provide directions
for future work.

16
C O N C L U S I O N

In this chapter we summarize the most important findings and list the
take home messages.

We provide a literature review of the methods used in AI develop-
ment for card games. We discuss the advantages and disadvantages
of the three most promising families of algorithms (MCTS, CFR and
DNN) for trick-taking card games in more detail and we present an
analysis for how to apply these methods to the Swiss card game Jass.
We provide a comparison of the most widely used methods in trick-
taking card games at the example of the Schieber variant of the Swiss
card game Jass. In the trump selection phase, empirical evaluation
suggests that the DNN slightly outperforms the ranked RB method. In
the card play phase, we found that the similarly strong DMCTS and
DNN outperform the random baseline, a robust RB bot and also ISMCTS.
While there is no clear winner, preliminary results against humans
indicate that our best bots (DMCTS) perform on par with the average
human players.

61

17
O U T L O O K

In this chapter we provide possible directions for consecutive research
in the near future.

Future work could take the challenging task of recruiting strong
human teams for a detailed evaluation of the bots against humans. For
this experiment it would be helpful to use two tables simultaneously
with the same cards combinations (on one table for the human team
and on the other for the bots team). In this way the influence of good
hands could be eliminated. Naturally, we would need to perform many
of these games to also reduce the bias that a certain card combination
might be more favorable for a specific team.

Since we did not see the bots implicitly applying the coordination
aspect with humans, future work could try to instill the bots with
effective coordination more explicitly.

63

B I B L I O G R A P H Y

[1] Nolan Bard et al. The Hanabi Challenge: A New Frontier for AI
Research. 2019. arXiv: 1902.00506 [cs.LG].

[2] Mark J. H. van den Bergh, Anne Hommelberg, Walter A. Kosters,
and Flora M. Spieksma. “Aspects of the Cooperative Card Game
Hanabi”. In: BNAIC 2016: Artificial Intelligence. Cham: Springer
International Publishing, 2017, pp. 93–105. isbn: 978-3-319-67468-
1.

[3] Ronald Bjarnason, Alan Fern, and Prasad Tadepalli. “Lower
Bounding Klondike Solitaire with Monte-Carlo Planning”. In:
Proceedings of the 19th International Conference on International
Conference on Automated Planning and Scheduling. ICAPS’09.
Thessaloniki, Greece: AAAI Press, 2009, pp. 26–33. isbn: 978-1-
57735-406-2.

[4] M. Bowling, N. Burch, M. Johanson, and O. Tammelin. “Heads-
up limit hold’em poker is solved”. In: Science 347.6218 (Jan.
2015), pp. 145–149. doi: 10.1126/science.1259433.

[5] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sand-
holm. “Deep Counterfactual Regret Minimization”. In: CoRR
abs/1811.00164 (2018). arXiv: 1811.00164.

[6] Noam Brown and Tuomas Sandholm. “Safe and Nested Sub-
game Solving for Imperfect-Information Games”. In: Advances
in Neural Information Processing Systems 30. Curran Associates,
Inc., 2017, pp. 689–699.

[7] Noam Brown and Tuomas Sandholm. “Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals”. In:
Science (2017). issn: 0036-8075. doi: 10.1126/science.aao1733.
eprint: http : / / science . sciencemag . org / content / early /

2017/12/15/science.aao1733.full.pdf.

[8] Noam Brown and Tuomas Sandholm. “Solving Imperfect-
Information Games via Discounted Regret Minimization”. In:
CoRR abs/1809.04040 (2018). arXiv: 1809.04040.

[9] Noam Brown and Tuomas Sandholm. “Superhuman AI for mul-
tiplayer poker”. In: Science 365.6456 (2019), pp. 885–890. issn:
0036-8075. doi: 10.1126/science.aay2400. eprint: https://
science.sciencemag.org/content/365/6456/885.full.pdf.
url: https://science.sciencemag.org/content/365/6456/
885.

65

https://arxiv.org/abs/1902.00506
https://doi.org/10.1126/science.1259433
https://arxiv.org/abs/1811.00164
https://doi.org/10.1126/science.aao1733
http://science.sciencemag.org/content/early/2017/12/15/science.aao1733.full.pdf
http://science.sciencemag.org/content/early/2017/12/15/science.aao1733.full.pdf
https://arxiv.org/abs/1809.04040
https://doi.org/10.1126/science.aay2400
https://science.sciencemag.org/content/365/6456/885.full.pdf
https://science.sciencemag.org/content/365/6456/885.full.pdf
https://science.sciencemag.org/content/365/6456/885
https://science.sciencemag.org/content/365/6456/885

66 bibliography

[10] Noam Brown, Tuomas Sandholm, and Brandon Amos. “Depth-
Limited Solving for Imperfect-Information Games”. In: Advances
in Neural Information Processing Systems 31. Ed. by S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett. Curran Associates, Inc., 2018, pp. 7674–7685.

[11] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowl-
ing, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and
S. Colton. “A Survey of Monte Carlo Tree Search Methods”. In:
IEEE Transactions on Computational Intelligence and AI in Games
4.1 (Mar. 2012), pp. 1–43. issn: 1943-068X. doi: 10.1109/TCIAIG.
2012.2186810.

[12] Neil Burch. “Time and Space: Why Imperfect Information Games
are Hard”. PhD thesis. University of Alberta, 2018. doi: 10.7939/
r36w96q7c.

[13] Murray Campbell, A.Joseph Hoane, and Feng-hsiung Hsu.
“Deep Blue”. In: Artificial Intelligence 134.1 (2002), pp. 57–83.
issn: 0004-3702. doi: https : / / doi . org / 10 . 1016 / S0004 -

3702(01)00129-1.

[14] Jiri Cermak, Branislav Bosansky, and Viliam Lisý. “Practical
Performance of Refinements of Nash Equilibria in Extensive-
Form Zero-Sum Games”. In: Frontiers in Artificial Intelligence and
Applications 263 (Aug. 2014). doi: 10.3233/978-1-61499-419-0-
201.

[15] H. Chang, C. Hsueh, and T. Hsu. “Convergence and correctness
analysis of Monte-Carlo tree search algorithms: A case study
of 2 by 4 Chinese dark chess”. In: 2015 IEEE Conference on Com-
putational Intelligence and Games (CIG). Aug. 2015, pp. 260–266.
doi: 10.1109/CIG.2015.7317963.

[16] Henry Charlesworth. “Application of Self-Play Reinforcement
Learning to a Four-Player Game of Imperfect Information”. In:
CoRR abs/1808.10442 (2018). arXiv: 1808.10442.

[17] P. I. Cowling, S. Devlin, E. J. Powley, D. Whitehouse, and J.
Rollason. “Player Preference and Style in a Leading Mobile Card
Game”. In: IEEE Transactions on Computational Intelligence and
AI in Games 7.3 (Sept. 2015), pp. 233–242. issn: 1943-068X. doi:
10.1109/TCIAIG.2014.2357174.

[18] P. I. Cowling, E. J. Powley, and D. Whitehouse. “Information Set
Monte Carlo Tree Search”. In: IEEE Transactions on Computational
Intelligence and AI in Games 4.2 (June 2012), pp. 120–143. issn:
1943-068X. doi: 10.1109/TCIAIG.2012.2200894.

[19] P. I. Cowling, C. D. Ward, and E. J. Powley. “Ensemble De-
terminization in Monte Carlo Tree Search for the Imperfect
Information Card Game Magic: The Gathering”. In: IEEE Trans-
actions on Computational Intelligence and AI in Games 4.4 (Dec.

https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.7939/r36w96q7c
https://doi.org/10.7939/r36w96q7c
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00129-1
https://doi.org/10.3233/978-1-61499-419-0-201
https://doi.org/10.3233/978-1-61499-419-0-201
https://doi.org/10.1109/CIG.2015.7317963
https://arxiv.org/abs/1808.10442
https://doi.org/10.1109/TCIAIG.2014.2357174
https://doi.org/10.1109/TCIAIG.2012.2200894

bibliography 67

2012), pp. 241–257. issn: 1943-068X. doi: 10.1109/TCIAIG.2012.
2204883.

[20] Trevor Davis, Neil Burch, and Michael Bowling. “Using Re-
sponse Functions to Measure Strategy Strength”. In: Proceedings
of the Twenty-Eighth Conference on Artificial Intelligence (AAAI).
2014, pp. 630–636.

[21] Sam Devlin, Anastasija Anspoka, Nick Sephton, Peter Cowling,
and Jeff Rollason. “Combining Gameplay Data with Monte
Carlo Tree Search to Emulate Human Play”. In: Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (2016).

[22] Stefan Edelkamp. “Challenging Human Supremacy in Skat –
Guided and Complete And-Or Belief-Space Tree Search for
Solving the Nullspiel”. In: 31. Workshop "Planen, Scheduling und
Konfigurieren, Entwerfen". 2018.

[23] Jakob N. Foerster, H. Francis Song, Edward Hughes, Neil
Burch, Iain Dunning, Shimon Whiteson, Matthew Botvinick,
and Michael Bowling. “Bayesian Action Decoder for Deep Multi-
Agent Reinforcement Learning”. In: CoRR abs/1811.01458 (2018).
arXiv: 1811.01458. url: http://arxiv.org/abs/1811.01458.

[24] Pablo García-Sánchez, Alberto Tonda, Antonio Mora, Giovanni
Squillero, and Juan Merelo Guervós. “Automated Playtesting in
Collectible Card Games using Evolutionary Algorithms: a Case
Study in HearthStone”. In: Knowledge-Based Systems 153 (Apr.
2018). doi: 10.1016/j.knosys.2018.04.030.

[25] Johannes Heinrich and David Silver. “Smooth UCT Search in
Computer Poker”. In: International Joint Conference on Artificial
Intelligence (2015).

[26] Johannes Heinrich and David Silver. “Deep Reinforcement
Learning from Self-Play in Imperfect-Information Games”. In:
CoRR abs/1603.01121 (2016). arXiv: 1603.01121.

[27] Marc J. V. Ponsen, Steven Jong, and Marc Lanctot. “Comput-
ing Approximate Nash Equilibria and Robust Best-Responses
Using Sampling.” In: J. Artificial Intelligence Res. 42 (Sept. 2011),
pp. 575–605. doi: 10.1613/jair.3402.

[28] Qiqi Jiang, Kuangzheng Li, Boyao Du, Hao Chen, and Hai Fang.
“DeltaDou: Expert-level Doudizhu AI through Self-play”. In:
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences
on Artificial Intelligence Organization, July 2019, pp. 1265–1271.
doi: 10.24963/ijcai.2019/176. url: https://doi.org/10.
24963/ijcai.2019/176.

https://doi.org/10.1109/TCIAIG.2012.2204883
https://doi.org/10.1109/TCIAIG.2012.2204883
https://arxiv.org/abs/1811.01458
http://arxiv.org/abs/1811.01458
https://doi.org/10.1016/j.knosys.2018.04.030
https://arxiv.org/abs/1603.01121
https://doi.org/10.1613/jair.3402
https://doi.org/10.24963/ijcai.2019/176
https://doi.org/10.24963/ijcai.2019/176
https://doi.org/10.24963/ijcai.2019/176

68 bibliography

[29] Keigo Kawamura, Naoki Mizukami, and Yoshimasa Tsuruoka.
“Neural Fictitious Self-Play in Imperfect Information Games
with Many Players”. In: Computer Games. Cham: Springer Inter-
national Publishing, 2018, pp. 61–74. isbn: 978-3-319-75931-9.

[30] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-
Carlo Planning”. In: Machine Learning: ECML 2006. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2006, pp. 282–293. isbn:
978-3-540-46056-5.

[31] Christian Kroer, Gabriele Farina, and Tuomas Sandholm. “Solv-
ing Large Sequential Games with the Excessive Gap Technique”.
In: Advances in Neural Information Processing Systems 31. Curran
Associates, Inc., 2018, pp. 872–882.

[32] Sebastian Kupferschmid and Malte Helmert. “A Skat Player
Based on Monte-Carlo Simulation”. In: Computers and Games.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 135–
147.

[33] M L. Ginsberg. “GIB: Imperfect Information in a Computa-
tionally Challenging Game”. In: Journal of Artificial Intelligence
Research 14 (June 2001), pp. 303–358. doi: 10.1613/jair.820.

[34] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael
Bowling. “Monte Carlo Sampling for Regret Minimization in
Extensive Games”. In: Advances in Neural Information Processing
Systems 22. Curran Associates, Inc., 2009, pp. 1078–1086.

[35] Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown.
Improving Policies via Search in Cooperative Partially Observable
Games. 2019. arXiv: 1912.02318 [cs.AI].

[36] Viliam Lisý, Marc Lanctot, and Michael Bowling. “Online Monte
Carlo Counterfactual Regret Minimization for Search in Im-
perfect Information Games”. In: Proceedings of the 2015 Interna-
tional Conference on Autonomous Agents and Multiagent Systems.
AAMAS ’15. Istanbul, Turkey: International Foundation for Au-
tonomous Agents and Multiagent Systems, 2015, pp. 27–36. isbn:
978-1-4503-3413-6.

[37] T. Mahlmann, J. Togelius, and G. N. Yannakakis. “Evolving card
sets towards balancing dominion”. In: 2012 IEEE Congress on
Evolutionary Computation. June 2012, pp. 1–8. doi: 10.1109/CEC.
2012.6256441.

[38] N. Mizukami and Y. Tsuruoka. “Building a computer Mahjong
player based on Monte Carlo simulation and opponent models”.
In: 2015 IEEE Conference on Computational Intelligence and Games
(CIG). Aug. 2015, pp. 275–283. doi: 10.1109/CIG.2015.7317929.

[39] Volodymyr Mnih et al. “Human-level control through deep
reinforcement learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–
533. issn: 00280836.

https://doi.org/10.1613/jair.820
https://arxiv.org/abs/1912.02318
https://doi.org/10.1109/CEC.2012.6256441
https://doi.org/10.1109/CEC.2012.6256441
https://doi.org/10.1109/CIG.2015.7317929

bibliography 69

[40] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin
Morrill, Nolan Bard, Trevor Davis, Kevin Waugh, Michael Jo-
hanson, and Michael Bowling. “DeepStack: Expert-level artifi-
cial intelligence in heads-up no-limit poker”. In: Science (2017).
issn: 0036-8075. doi: 10.1126/science.aam6960. eprint: http:
//science.sciencemag.org/content/early/2017/03/01/

science.aam6960.full.pdf.

[41] John F. Nash. “Equilibrium points in n-person games”. In: Pro-
ceedings of the National Academy of Sciences 36.1 (1950), pp. 48–49.
issn: 0027-8424. doi: 10.1073/pnas.36.1.48. eprint: https:
//www.pnas.org/content/36/1/48.full.pdf.

[42] John F. Nash. “Non-Cooperative Games”. In: Annals of Mathe-
matics 54.2 (1951), pp. 286–295. issn: 0003486X.

[43] Joel Niklaus, Michele Alberti, Rolf Ingold, Markus Stolze, and
Thomas Koller. “Challenging Human Supremacy: Evaluating
Monte Carlo Tree Search and Deep Learning for the Trick Taking
Card Game Jass”. In: Under Review: 19th International Conference
on Autonomous Agents and Multi-Agent Systems. Auckland, New
Zealand, 2020.

[44] Joel Niklaus, Michele Alberti, Rolf Ingold, Markus Stolze, and
Thomas Koller. “Challenging Human Supremacy: Evaluating
Monte Carlo Tree Search and Deep Learning for the Trick Taking
Card Game Jass”. In: Association for the Advancement of Artificial
Intelligence Workshop on Reinforcement Learning for Games. New
York, United States, Feb. 2020.

[45] Joel Niklaus, Michele Alberti, Vinay Pondenkandath, Rolf In-
gold, and Marcus Liwicki. “Survey of Artificial Intelligence
for Card Games and Its Application to the Swiss Game Jass”.
In: 2019 6th Swiss Conference on Data Science (SDS). June 2019,
pp. 25–30. doi: 10.1109/SDS.2019.00-12.

[46] Joel Niklaus, Michele Alberti, Vinaychandran Pondenkandath,
Rolf Ingold, and Marcus Liwicki. “Overview of Artificial In-
telligence for Card Games and Its Application to the Swiss
Game Jass”. In: 6th Swiss Conference on Data Science (SDS). Bern,
Switzerland: IEEE, 2019, pp. 25–30. isbn: 978-1-7281-3105-4. doi:
110.1109/SDS.2019.00-12. arXiv: 1906.04439.

[47] Jason Noble. “Finding Robust Texas Hold’em Poker Strategies
Using Pareto Coevolution and Deterministic Crowding”. In:
International Conference On Machine Learning And Applications.
2002.

[48] Hirotaka Osawa. “Solving Hanabi: Estimating Hands by Oppo-
nent’s Actions in Cooperative Game with Incomplete Informa-
tion”. In: AAAI Workshop: Computer Poker and Imperfect Informa-
tion. 2015.

https://doi.org/10.1126/science.aam6960
http://science.sciencemag.org/content/early/2017/03/01/science.aam6960.full.pdf
http://science.sciencemag.org/content/early/2017/03/01/science.aam6960.full.pdf
http://science.sciencemag.org/content/early/2017/03/01/science.aam6960.full.pdf
https://doi.org/10.1073/pnas.36.1.48
https://www.pnas.org/content/36/1/48.full.pdf
https://www.pnas.org/content/36/1/48.full.pdf
https://doi.org/10.1109/SDS.2019.00-12
https://doi.org/110.1109/SDS.2019.00-12
https://arxiv.org/abs/1906.04439

70 bibliography

[49] Denis Robilliard, Cyril Fonlupt, and Fabien Teytaud. “Monte-
Carlo Tree Search for the Game of “7 Wonders””. In: Computer
Games. Cham: Springer International Publishing, 2014, pp. 64–77.
isbn: 978-3-319-14923-3.

[50] Jiang Rong, Tao Qin, and Bo An. Competitive Bridge Bidding with
Deep Neural Networks. 2019. arXiv: 1903.00900.

[51] Jonathan Rubin and Ian Watson. “Computer poker: A review”.
In: Artificial Intelligence 175.5 (2011). Special Review Issue,
pp. 958–987. issn: 0004-3702. doi: https://doi.org/10.1016/j.
artint.2010.12.005.

[52] A. Santos, P. A. Santos, and F. S. Melo. “Monte Carlo tree search
experiments in hearthstone”. In: 2017 IEEE Conference on Com-
putational Intelligence and Games (CIG). Aug. 2017, pp. 272–279.
doi: 10.1109/CIG.2017.8080446.

[53] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishi-
moto, Martin Müller, Robert Lake, Paul Lu, and Steve Sutphen.
“Checkers Is Solved”. In: Science 317.5844 (2007), pp. 1518–1522.
issn: 0036-8075. doi: 10.1126/science.1144079. eprint: http://
science.sciencemag.org/content/317/5844/1518.full.pdf.

[54] Jan Schäfer. “The UCT Algorithm Applied to Games with Im-
perfect Information”. MA thesis. Germany: Otto-Von-Guericke
University Magdeburg, 2008.

[55] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan,
and Pieter Abbeel. “Trust Region Policy Optimization”. In: CoRR
abs/1502.05477 (2015). arXiv: 1502.05477.

[56] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. “Proximal Policy Optimization Algorithms”.
In: CoRR abs/1707.06347 (2017). arXiv: 1707.06347.

[57] Mohammad Shafiei, Nathan Sturtevant, and Jonathan Scha-
effer. “Comparing UCT versus CFR in simultaneous games”.
In: Proceedings of the IJCAI-09 Workshop on General Game Playing
(GIGA’09) (Jan. 2009).

[58] Silvan Sievers and Malte Helmert. “A Doppelkopf Player Based
on UCT”. In: KI 2015: Advances in Artificial Intelligence. Springer
International Publishing, 2015, pp. 151–165. isbn: 978-3-319-
24489-1.

[59] David Silver et al. “Mastering the Game of Go with Deep Neu-
ral Networks and Tree Search”. In: Nature 529.7587 (Jan. 2016),
pp. 484–489. doi: 10.1038/nature16961.

[60] David Silver et al. “Mastering Chess and Shogi by Self-Play
with a General Reinforcement Learning Algorithm”. In: CoRR
abs/1712.01815 (2017). arXiv: 1712.01815.

https://arxiv.org/abs/1903.00900
https://doi.org/https://doi.org/10.1016/j.artint.2010.12.005
https://doi.org/https://doi.org/10.1016/j.artint.2010.12.005
https://doi.org/10.1109/CIG.2017.8080446
https://doi.org/10.1126/science.1144079
http://science.sciencemag.org/content/317/5844/1518.full.pdf
http://science.sciencemag.org/content/317/5844/1518.full.pdf
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1712.01815

bibliography 71

[61] Christopher Solinas, Douglas Rebstock, and Michael Buro. “Im-
proving Search with Supervised Learning in Trick-Based Card
Games”. In: CoRR abs/1903.09604 (2019). arXiv: 1903.09604.

[62] Nathan R. Sturtevant. “An Analysis of UCT in Multi-player
Games”. In: Computers and Games. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 37–49. isbn: 978-3-540-87608-3.

[63] Nathan R. Sturtevant and Adam M. White. “Feature Construc-
tion for Reinforcement Learning in Hearts”. In: Computers and
Games. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 122–134. isbn: 978-3-540-75538-8.

[64] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay
Mansour. “Policy Gradient Methods for Reinforcement Learn-
ing with Function Approximation”. In: Proceedings of the 12th
International Conference on Neural Information Processing Systems.
NIPS’99. Denver, CO: MIT Press, 1999, pp. 1057–1063.

[65] Richard Sutton and Andrew G. Barto. “Reinforcement Learn-
ing: An Introduction”. In: IEEE transactions on neural networks
/ a publication of the IEEE Neural Networks Council 9 (Feb. 1998),
p. 1054. doi: 10.1109/TNN.1998.712192.

[66] Maciej Swiechowski, Tomasz Tajmajer, and Andrzej Janusz. “Im-
proving Hearthstone AI by Combining MCTS and Supervised
Learning Algorithms”. In: 2018 IEEE Conference on Computational
Intelligence and Games (CIG) (Aug. 2018). doi: 10.1109/cig.2018.
8490368.

[67] Zheng Tian, Shihao Zou, Tim Warr, Lisheng Wu, and Jun
Wang. “Learning Multi-agent Implicit Communication Through
Actions: A Case Study in Contract Bridge, a Collaborative
Imperfect-Information Game”. In: CoRR abs/1810.04444 (2018).
arXiv: 1810.04444. url: http://arxiv.org/abs/1810.04444.

[68] Oriol Vinyals et al. AlphaStar: Mastering the Real-Time Strategy
Game StarCraft II. [Online; accessed January 29, 2019]. 2019. url:
https://deepmind.com/blog/alphastar- mastering- real-

time-strategy-game-starcraft-ii/.

[69] Joseph Walton-Rivers, Piers R. Williams, Richard Bartle, Diego
Perez-Liebana, and Simon M. Lucas. “Evaluating and modelling
Hanabi-playing agents”. In: 2017 IEEE Congress on Evolution-
ary Computation (CEC) (June 2017). doi: 10.1109/cec.2017.
7969465.

[70] C. D. Ward and P. I. Cowling. “Monte Carlo search applied to
card selection in Magic: The Gathering”. In: 2009 IEEE Sympo-
sium on Computational Intelligence and Games. IEEE, Sept. 2009.
doi: 10.1109/cig.2009.5286501.

https://arxiv.org/abs/1903.09604
https://doi.org/10.1109/TNN.1998.712192
https://doi.org/10.1109/cig.2018.8490368
https://doi.org/10.1109/cig.2018.8490368
https://arxiv.org/abs/1810.04444
http://arxiv.org/abs/1810.04444
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://doi.org/10.1109/cec.2017.7969465
https://doi.org/10.1109/cec.2017.7969465
https://doi.org/10.1109/cig.2009.5286501

72 bibliography

[71] Marcos Norio Watanabe and Pier Luca Lanzi. “Traditional
Wisdom and Monte Carlo Tree Search Face-to-Face in the
Card Game Scopone”. In: IEEE Transactions on Games 10 (2018),
pp. 317–332.

[72] D. Whitehouse, E. J. Powley, and P. I. Cowling. “Determiniza-
tion and information set Monte Carlo Tree Search for the card
game Dou Di Zhu”. In: 2011 IEEE Conference on Computational
Intelligence and Games (CIG’11). Aug. 2011, pp. 87–94. doi: 10.
1109/CIG.2011.6031993.

[73] Daniel Whitehouse, Peter I. Cowling, Edward J. Powley, and Jeff
Rollason. “Integrating Monte Carlo Tree Search with Knowledge-
based Methods to Create Engaging Play in a Commercial Mo-
bile Game”. In: Proceedings of the Ninth AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment. AIIDE’13.
Boston, MA, USA: AAAI Press, 2013, pp. 100–106. isbn: 978-1-
57735-607-3.

[74] Xiang Yan, Persi Diaconis, Paat Rusmevichientong, and Ben-
jamin V. Roy. “Solitaire: Man Versus Machine”. In: Advances
in Neural Information Processing Systems 17. Ed. by L. K. Saul, Y.
Weiss, and L. Bottou. MIT Press, 2005, pp. 1553–1560.

[75] Georgios N. Yannakakis and Julian Togelius. Artificial Intelligence
and Games. http://gameaibook.org. Springer, 2018.

[76] Martin Zinkevich, Michael Johanson, Michael Bowling, and
Carmelo Piccione. “Regret Minimization in Games with Incom-
plete Information”. In: Advances in Neural Information Processing
Systems 20. Curran Associates, Inc., 2008, pp. 1729–1736.

https://doi.org/10.1109/CIG.2011.6031993
https://doi.org/10.1109/CIG.2011.6031993
http://gameaibook.org

Part V

A P P E N D I X

In this part we add additional content for the interested
reader.

A
D E S C R I P T I O N O F M E N T I O N E D G A M E S

In this chapter we give the gist of the less well-known games discussed
in the paper (in order of appearance).

Magic: The Gathering is a trading and digital collectible card game
played by two or more players. 7 Wonders is a board game with strong
elements of card games including hidden information for two to seven
players. Scopone is a variant of the Italian card game Scopa. Scopa is
normally played with two or four players but there also exist variants
for three, five or six players. Hanabi is a French cooperative card game
for two to five players. Spades is a four player trick-taking card game
mainly played in North America. Big 2 is a Chinese card game for
two to four players mainly played in East and South East Asia. The
goal is, to get rid of all of one’s cards first. Tichu, a game popular in
Switzerland, is a variant of Big 2. Mahjong is a traditional Chinese tile-
based game for four (or seldom three) players similar to the Western
game Rummy. Skat is a three player trick-taking card game mainly
played in Germany. Klondike is a single-player variant of the French
card game Patience and shipped with Windows since version 3. Bridge
is a trick-taking card game for four players played world-wide in
clubs, tournaments, online and socially at home. It has often been
used as a test bed for AI research and is still an active area of research,
since super-human performance has not been achieved yet. Doppelkopf
is a trick-taking card game for four people, mainly played in Ger-
many. There exist variations for three to seven players. Doppelkopf
is similar to Skat, both originating from the game Schafkopf. Hearth-
stone is an online collectible card video game, developed by Blizzard
Entertainment. It is played turn by turn by two opponents using a
constructed deck of 30 cards. Hearts is a four player trick-taking card
game, mainly played in North America. Dou Di Zhu is a Chinese card
game for three players. Goofspiel is a simple bidding card game for
two or more players. One-Card-Poker generalizes the minimal variant
Kuhn-Poker. Cribbage is a traditional English card game for two to
four players, played with the normal 52-card Poker set. Dominion is a
modern deck-building card game similar to Magic: The Gathering.

75

B
R E V I E W S

In this chapter we add the reviews we received from our peers. We
would like to take this opportunity to thank them for their valuable
feedback.

b.1 swiss data science conference 2019

In this section we list the three reviews received for the paper accepted
at the Swiss Data Science Conference in June 2019 [45].

b.1.1 Review 1

SCORE: 2 (accept)
———– Overall evaluation ———–
AI development for games has seen steady improvements for several
decades - Deep Blue, for instance, dates back more than 20 years, as
do many sophisticated PC game engines including some card games.
The word "decade" should definitely appear in plural in the abstract
of this work. Apart from this detail, the scope of the text is of interest
because it clearly covers two needs in a single paper: a niche with a
game not covered by existing literature, and a survey about the field.

The introduction could mention that as opposed to card games,
general game playing engines are quite successful for board games
and other types of games.

The related work could be elaborated on, for instance shedding
some light on who is doing this game research - one is a book and
one is a thesis, hence there seem to be few conference/journal articles
on this topic.

Section V on reinforcement learning would need some polishing.
For instance, V-A talks about "updates the value function" without
referring to what the value function is.

Sections IV to VII could be compressed to gain additional analytical
explanations for the use case of Jass. Currently, this reads like "we
think this is the case" whereas a more substantiated argumentation
would strengthen the choice of MCTS/CFR.

The presentation structure could be improved to avoid single sub-
sections (e.g. I-A main contribution). The term man-made should
probably read human-made.

From the perspective of somebody who spent a lot of time in the
past in game development including AIs, this is an enjoyable read

77

78 reviews

with little need for conference-level improvements and is therefore
recommended for publication.

b.1.2 Review 2

SCORE: 1 (weak accept)
———– Overall evaluation ———–
This paper gives a survey of the current state of the art of AI for card
games, and applies it to the Swiss game of Jass (a game of imperfect
information, thus solutions are relevant for several real use cases apart
from games).

The survey part is very well done, informative and readable; some
sort of table or figure would help just to break up the huge wall of
text.

The application part to Jass is rather disappointing: it shows no
experimental results, just a "quick" theoretical analysis. More "flesh to
the bone" would have been nice.

- The paper is generally very well written. Areas to improve could
be: add more references to the forst paragraph of Sec. I; add more
(visual) structure (in terms of paragraphs) to the appendix; in Sec.
VIII.B, in the phrase "To put it simply" doesn’t it need to be "simple"
instead of "simply"?

- Sec. II is quite brief and only focuses on overview articles; how
about relevant related work that focuses on single approaches? Of
course you treat them later in your own survey, so for the reader, this
section really comes in a little strange. Consider integrating it into Sec.
I altogether. Also consider using the term "Survey" in the title rather
than "Overview" (would make the paper better findable).

- The conclusion is a mere summary and written in present tense
rather past tense; it should be replaced by real conclusions.

b.1.3 Review 3

SCORE: -1 (weak reject)
———– Overall evaluation ———–
The paper provides a sound overview about different approaches
using AI to play (card) games.

However, I am a bit puzzled what to take out of the article. While I
highly appreciate the comprehensive overview of techniques applied,
the part on formalizing or model the Jass game seems to be short.
A classification / characterization of the problem class in which Jass
seems to be is given, but further modeling of the problem is missing.
However, this would have been an initial step towards selecting a
technique for providing a Jass playing system.

Regarding some games the references are a bit outdated. In particu-
lar planning and search based approaches, e.g. for Skat have improved

B.2 aaai workshop on reinforcement learning for games 2020 79

and now provide competitive performance, and are, probably also
closer to the problem class of Jass than Poker is.

b.2 aaai workshop on reinforcement learning for
games 2020

In this section we list the two reviews received for the paper accepted
at the Association for the Advancement of Artificial Intelligence (AAAI)
Workshop on Reinforcement Learning for Games in February 2020
[44].

b.2.1 Review 1

SCORE: 2 (accept)
———– Overall evaluation ———–
In my judgement this paper is a good fit for the workshop. Even
though it does not show any algorithmic innovation it presents nice
empirical evaluation of well known methods applied to this domain.
Most of the infrastructure is open-sourced which is also valuable
contribution to the community.

Minor notes:

• We compare MCTS and DNN with human players - > should
this be: "We compare ISMCTS and DNN with human players"?

• The DNN Max. Policy is -> The DNN Max policy is

• What is ’heavy rollout’? Can you define it in the text? After
reading section 7 I don’t exactly know what DNN Max is even
though it is important for the rest of the paper. Can you describe
it in more detail?

• Figure 2 should be organized better, it is now difficult to separate
different families of methods (Rollout/MCTS/DNN).

• Would it be possible to publish also the training data?

b.3 review 2

SCORE: 2 (accept)
———– Overall evaluation ———–
This paper seems to be well in scope of the workshop and discusses
the card game JASS. It does a good job in introducing the game
(though I already know it, so not sure how clear it is for newcomers),
and I kind of like to see some RL work happening in this area. I am
not sure how much the paper really contributes to the SOTA as it
mostly gives an overview of what has been done in the area and does
some experimental comparisons of some of the techniques that have

80 reviews

been already investigated in trick-taking games. I guess the authors
could place their work (the experiments) a little bit more into context
related to other games where some of the presented techniques have
been tested before. It is also nice the authors have open-sourced their
implementation (though I wasn’t able to verify).

'HFODUDWLRQ�RI�FRQVHQW

RQ�WKH�EDVLV�RI ArWLFOH �� RI�WKH�RSL�3KLO��QDW����

Name/)LUVW�1DPH:

5HJLVWUDWLRQ�1XPEHU:

6WXG\�SURJUDP:

Bachelor  Master  Dissertation 

7LWOH�RI�WKH�WKHVLV:

6XSHUYLVRU:�

,�GHFODUH�KHUHZLWK�WKDW�WKLV�WKHVLV�LV�P\�RZQ�ZRUN�DQG�WKDW�,�KDYH�QRW�XVHG�DQ\�VRXUFHV�RWKHU�WKDQ�

WKRVH�VWDWHG��,�KDYH�LQGLFDWHG�WKH�DGRSWLRQ�RI�TXRWDWLRQV�DV�ZHOO�DV�WKRXJKWV�WDNHQ�IURP�RWKHU�DXWKRUV�

DV�VXFK�LQ�WKH�WKHVLV��,�DP�DZDUH�WKDW�WKH�6HQDWH�SXUVXDQW�WR�$UWLFOH����SDUDJUDSK���OLWHUD�U�RI�WKH�

8QLYHUVLW\�$FW�RI���6HSWHPEHU�������LV�DXWKRUL]HG�WR�UHYRNH�WKH�WLWOH�DZDUGHG�RQ�WKH�EDVLV�RI�WKLV�

WKHVLV�

)RU�WKH�SXUSRVHV�RI�HYDOXDWLRQ�DQG�YHULILFDWLRQ�RI�FRPSOLDQFH�ZLWK�WKH�GHFODUDWLRQ�RI�RULJLQDOLW\�DQG�WKH�

UHJXODWLRQV�JRYHUQLQJ�SODJLDULVP��,�KHUHE\�JUDQW�WKH�8QLYHUVLW\�RI�%HUQ�WKH�ULJKW�WR�SURFHVV�P\�SHUVRQDO�

GDWD�DQG�WR�SHUIRUP�WKH�DFWV�RI�XVH�WKLV�UHTXLUHV��LQ�SDUWLFXODU��WR�UHSURGXFH�WKH�ZULWWHQ�WKHVLV�DQG�WR�

VWRUH�LW�SHUPDQHQWO\�LQ�D�GDWDEDVH��DQG�WR�XVH�VDLG�GDWDEDVH��RU�WR�PDNH�VDLG�GDWDEDVH�DYDLODEOH��WR�

HQDEOH�FRPSDULVRQ�ZLWK�IXWXUH�WKHVHV�VXEPLWWHG�E\�RWKHUV�

6LJQDWXUH

3ODFH�'DWH

